FastFlow 项目使用教程

FastFlow 项目使用教程

FastFlow FastFlow 项目地址: https://gitcode.com/gh_mirrors/fast/FastFlow

1. 项目目录结构及介绍

FastFlow 项目的目录结构如下:

FastFlow/
├── configs/
│   ├── resnet18.yaml
│   └── ...
├── dataset/
│   └── ...
├── fastflow/
│   └── ...
├── utils/
│   └── ...
├── .gitignore
├── LICENSE
├── README.md
├── constants.py
├── main.py
├── requirements.txt
└── ...

目录结构介绍

  • configs/: 存放项目的配置文件,如 resnet18.yaml
  • dataset/: 存放数据集相关的文件。
  • fastflow/: 存放 FastFlow 模型的核心代码。
  • utils/: 存放项目中使用的工具函数。
  • .gitignore: Git 忽略文件配置。
  • LICENSE: 项目的开源许可证文件。
  • README.md: 项目的说明文档。
  • constants.py: 存放项目中使用的常量。
  • main.py: 项目的启动文件。
  • requirements.txt: 项目依赖的 Python 包列表。

2. 项目的启动文件介绍

项目的启动文件是 main.py。该文件负责项目的训练和评估任务。以下是 main.py 的基本使用方法:

训练

python main.py -cfg configs/resnet18.yaml --data path/to/mvtec-ad -cat [category]

评估

python main.py -cfg configs/resnet18.yaml --data path/to/mvtec-ad -cat [category] --eval -ckpt _fastflow_experiment_checkpoints/exp[index]/[epoch#].pt

3. 项目的配置文件介绍

项目的配置文件存放在 configs/ 目录下,例如 resnet18.yaml。配置文件中包含了训练和评估过程中所需的参数设置,如模型类型、数据路径、训练轮数等。

配置文件示例

model:
  type: resnet18
  ...

data:
  path: path/to/mvtec-ad
  category: [category]
  ...

train:
  epochs: 500
  ...

eval:
  ...

通过修改配置文件中的参数,可以调整项目的训练和评估行为。

FastFlow FastFlow 项目地址: https://gitcode.com/gh_mirrors/fast/FastFlow

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶妃习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值