FastFlow 项目使用教程
FastFlow 项目地址: https://gitcode.com/gh_mirrors/fast/FastFlow
1. 项目目录结构及介绍
FastFlow 项目的目录结构如下:
FastFlow/
├── configs/
│ ├── resnet18.yaml
│ └── ...
├── dataset/
│ └── ...
├── fastflow/
│ └── ...
├── utils/
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── constants.py
├── main.py
├── requirements.txt
└── ...
目录结构介绍
- configs/: 存放项目的配置文件,如
resnet18.yaml
。 - dataset/: 存放数据集相关的文件。
- fastflow/: 存放 FastFlow 模型的核心代码。
- utils/: 存放项目中使用的工具函数。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的说明文档。
- constants.py: 存放项目中使用的常量。
- main.py: 项目的启动文件。
- requirements.txt: 项目依赖的 Python 包列表。
2. 项目的启动文件介绍
项目的启动文件是 main.py
。该文件负责项目的训练和评估任务。以下是 main.py
的基本使用方法:
训练
python main.py -cfg configs/resnet18.yaml --data path/to/mvtec-ad -cat [category]
评估
python main.py -cfg configs/resnet18.yaml --data path/to/mvtec-ad -cat [category] --eval -ckpt _fastflow_experiment_checkpoints/exp[index]/[epoch#].pt
3. 项目的配置文件介绍
项目的配置文件存放在 configs/
目录下,例如 resnet18.yaml
。配置文件中包含了训练和评估过程中所需的参数设置,如模型类型、数据路径、训练轮数等。
配置文件示例
model:
type: resnet18
...
data:
path: path/to/mvtec-ad
category: [category]
...
train:
epochs: 500
...
eval:
...
通过修改配置文件中的参数,可以调整项目的训练和评估行为。