Swin3D 开源项目安装与使用教程

Swin3D 开源项目安装与使用教程

Swin3DA shift-window based transformer for 3D sparse tasks项目地址:https://gitcode.com/gh_mirrors/sw/Swin3D

一、项目目录结构及介绍

Swin3D 是由微软开发的一个深度学习项目,专注于3D视觉任务。以下是该仓库的基本目录结构及关键组件简述:

.
├── README.md          # 项目说明文件,包含了快速入门指南和重要信息。
├── LICENSE            # 许可证文件,规定了如何合法使用该项目。
├── configs            # 配置文件夹,存储着各种实验设置,用于训练和评估模型。
├── models             # 模型定义文件夹,包含核心Swin3D模型架构及相关网络组件。
├── utils              # 辅助工具集,提供了数据处理、日志记录等功能。
├── datasets           # 可能包含数据集处理脚本或指向数据集下载的信息(实际仓库可能不直接包含数据)。
├── train.py           # 主训练脚本,启动模型训练的主要程序。
├── eval.py            # 评估脚本,用于在验证集或测试集上评估训练好的模型。
└── requirements.txt   # 环境依赖文件,列出运行项目所需的Python库及其版本。

二、项目的启动文件介绍

train.py

这是项目的核心启动脚本,用于启动模型的训练过程。它读取指定的配置文件,初始化模型,加载数据集,然后进行循环迭代训练。用户可以通过命令行参数或者配置文件来指定模型类型、数据集路径、预训练权重等。

eval.py

评估脚本,允许用户对已训练的模型进行性能评估。同样,它依据提供的配置文件来定位模型权重、数据集和其他评估相关的设置。

三、项目的配置文件介绍

配置文件通常位于 configs 文件夹下,命名如 config_example.yaml。这些YAML格式的文件详细说明了运行实验的所有细节:

  • 基础设置:包括模型架构选择、训练批次大小、总训练步数等。
  • 数据集:指定了数据集的路径、预处理方式以及是否使用预训练权重。
  • 模型参数:具体到模型的每一层配置,比如特征维度、窗口大小等。
  • 优化器与学习率调度:包括选用哪种优化算法、初始学习率以及学习率随时间变化的策略。
  • 训练与评估指标:定义了评价模型表现的标准,例如精度、召回率等。

配置文件是高度可定制的,允许用户根据自己的需求调整实验设置,从而进行模型的训练和评估。


此教程概览了Swin3D项目的基本结构、启动文件功能以及配置文件的重要性,为想要使用该项目的研究人员和开发者提供了一个快速入门的指引。在实际操作前,请确保阅读仓库的README文件获取最新和详细的使用指南。

Swin3DA shift-window based transformer for 3D sparse tasks项目地址:https://gitcode.com/gh_mirrors/sw/Swin3D

Swin Transformer是一种新型的Transformer结构,它在自然语言处理和计算机视觉领域都取得了很好的效果。在3D图像分割任务中,可以使用Swin Transformer来提取特征,然后使用U-Net结构进行分割。 以下是使用Swin Transformer进行3D图像分割的步骤: 1. 导入必要的库和模块,包括torch、torchvision、Swin Transformer和U-Net等。 2. 定义Swin Transformer编码器和U-Net解码器。编码器使用Swin Transformer提取特征,解码器使用U-Net进行分割。 3. 定义损失函数和优化器。在3D图像分割任务中,可以使用交叉熵损失函数和Adam优化器。 4. 加载数据集并进行预处理。可以使用torchvision中的transforms对数据进行预处理,例如缩放、裁剪、旋转等。 5. 训练模型。使用加载的数据集对模型进行训练,并在每个epoch结束时计算损失函数和准确率。 6. 测试模型。使用测试集对训练好的模型进行测试,并计算准确率和其他评价指标。 以下是一个示例代码,用于使用Swin Transformer进行3D图像分割: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from swin_transformer import SwinTransformer3D from unet import UNet3D # 定义Swin Transformer编码器和U-Net解码器 encoder = SwinTransformer3D() decoder = UNet3D() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(list(encoder.parameters()) + list(decoder.parameters()), lr=0.001) # 加载数据集并进行预处理 transform = transforms.Compose([ transforms.Resize((128, 128, 128)), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = decoder(encoder(inputs)) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('[%d] loss: %.3f' % (epoch + 1, running_loss / len(trainloader))) # 测试模型 transform = transforms.Compose([ transforms.Resize((128, 128, 128)), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False) correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = decoder(encoder(images)) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

包楚多

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值