LongT5 开源项目教程

LongT5 开源项目教程

longt5项目地址:https://gitcode.com/gh_mirrors/lo/longt5

项目介绍

LongT5 是 Google Research 开发的一个高效处理长序列输入的文本到文本转换器模型。它是 T5 模型的扩展,通过集成来自长输入转换器(如 ETC)的注意力思想和从摘要预训练(如 PEGASUS)中采用的预训练策略,形成了一种新的注意力机制,称为 Transient Global(TGlobal)。这种机制模仿了 ETC 的局部/全局注意力机制,但不需要额外的侧输入。

项目快速启动

环境准备

首先,克隆 LongT5 仓库到本地:

git clone https://github.com/google-research/longt5.git

设置环境变量:

export LONGT5_DIR="path/to/longt5"

数据预处理

运行数据预处理脚本:

python3 ${LONGT5_DIR}/data/nq_preprocess.py \
  --input_path=${INPUT_PATH} \
  --output_path=${OUTPUT_PATH}

模型训练

根据 tasks.py 文件中的配置进行模型训练:

python3 ${LONGT5_DIR}/tasks.py

应用案例和最佳实践

自然问题(Natural Questions)

LongT5 在处理自然问题数据集时表现出色,特别是在长序列输入的情况下。通过使用 TGlobal 注意力机制,LongT5 能够更高效地处理长文本,提高问答任务的准确性。

媒体摘要(MediaSum)

在媒体摘要任务中,LongT5 同样展现了其处理长文本的能力。通过预处理和训练,LongT5 能够生成高质量的摘要,适用于新闻、访谈等多种场景。

典型生态项目

TensorFlow Datasets

LongT5 项目中广泛使用了 TensorFlow Datasets,这是一个用于机器学习数据集的库,支持多种数据格式和预处理操作。

Flaxformer

Flaxformer 是 LongT5 项目中使用的架构模型和训练配置的实现库,提供了灵活的模型定义和训练接口。

通过以上模块的介绍和实践,您可以快速上手并应用 LongT5 项目,实现高效的长序列文本处理。

longt5项目地址:https://gitcode.com/gh_mirrors/lo/longt5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

包楚多

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值