利用OpenAI Whisper和TensorFlow Lite实现离线语音识别

利用OpenAI Whisper和TensorFlow Lite实现离线语音识别

whisper_androidOffline Speech Recognition with OpenAI Whisper and TensorFlow Lite for Android项目地址:https://gitcode.com/gh_mirrors/wh/whisper_android

在这个项目中,我们将向您展示如何在Android应用中集成OpenAI的Whisper模型和Recorder类,以实现音频记录和离线语音识别。通过这个简单的指南,您可以轻松地在您的应用程序中构建这一强大功能。

Whisper ASR整合指南

Whisper(语音识别)

首先,初始化并配置Whisper:

// 初始化Whisper
Whisper mWhisper = new Whisper(this);

// 加载模型和词汇表
String modelPath = getFilePath("whisper-tiny.tflite");
String vocabPath = getFilePath("filters_vocab_multilingual.bin");
mWhisper.loadModel(modelPath, vocabPath, true);

// 设置监听器处理更新和结果
mWhisper.setListener(new IWhisperListener() {...});

接着,执行转录:

// 设置要转录的音频文件路径
String waveFilePath = getFilePath("your_audio_file.wav");
mWhisper.setFilePath(waveFilePath);

// 启动转录
mWhisper.setAction(Whisper.ACTION_TRANSCRIBE);
mWhisper.start();

// 执行其他操作
// 添加你的额外代码

// 停止转录
mWhisper.stop();

Recorder(音频录制)

然后,初始化并配置Recorder:

// 初始化Recorder
Recorder mRecorder = new Recorder(this);

// 设置监听器处理更新和音频数据
mRecorder.setListener(new IRecorderListener() {...});

开始录音:

// 检查并请求录音权限
checkRecordPermission();

// 设置录音文件路径
mRecorder.setFilePath(waveFilePath);

// 开始录音
mRecorder.start();

// 执行其他操作
// 添加你的额外代码

// 停止录音
mRecorder.stop();

请根据您的具体需求调整代码,并确保正确处理文件路径和异常。

演示视频

观看演示视频,体验实时的语音识别效果。

注意事项

使用Whisper ASR时,务必关注音频数据和转录文本的同步以及在Android应用中的错误处理,以保证良好的用户体验。

现在,利用这个开源项目,您可以将高级别的语音识别功能无缝集成到自己的应用中,无论是实时转录还是处理预录的音频文件,都能得心应手。

享受使用Whisper ASR为您的Android应用增添离线语音识别功能的乐趣吧!

whisper_androidOffline Speech Recognition with OpenAI Whisper and TensorFlow Lite for Android项目地址:https://gitcode.com/gh_mirrors/wh/whisper_android

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

窦恺墩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值