利用OpenAI Whisper和TensorFlow Lite实现离线语音识别
在这个项目中,我们将向您展示如何在Android应用中集成OpenAI的Whisper模型和Recorder类,以实现音频记录和离线语音识别。通过这个简单的指南,您可以轻松地在您的应用程序中构建这一强大功能。
Whisper ASR整合指南
Whisper(语音识别)
首先,初始化并配置Whisper:
// 初始化Whisper
Whisper mWhisper = new Whisper(this);
// 加载模型和词汇表
String modelPath = getFilePath("whisper-tiny.tflite");
String vocabPath = getFilePath("filters_vocab_multilingual.bin");
mWhisper.loadModel(modelPath, vocabPath, true);
// 设置监听器处理更新和结果
mWhisper.setListener(new IWhisperListener() {...});
接着,执行转录:
// 设置要转录的音频文件路径
String waveFilePath = getFilePath("your_audio_file.wav");
mWhisper.setFilePath(waveFilePath);
// 启动转录
mWhisper.setAction(Whisper.ACTION_TRANSCRIBE);
mWhisper.start();
// 执行其他操作
// 添加你的额外代码
// 停止转录
mWhisper.stop();
Recorder(音频录制)
然后,初始化并配置Recorder:
// 初始化Recorder
Recorder mRecorder = new Recorder(this);
// 设置监听器处理更新和音频数据
mRecorder.setListener(new IRecorderListener() {...});
开始录音:
// 检查并请求录音权限
checkRecordPermission();
// 设置录音文件路径
mRecorder.setFilePath(waveFilePath);
// 开始录音
mRecorder.start();
// 执行其他操作
// 添加你的额外代码
// 停止录音
mRecorder.stop();
请根据您的具体需求调整代码,并确保正确处理文件路径和异常。
演示视频
观看演示视频,体验实时的语音识别效果。
注意事项
使用Whisper ASR时,务必关注音频数据和转录文本的同步以及在Android应用中的错误处理,以保证良好的用户体验。
现在,利用这个开源项目,您可以将高级别的语音识别功能无缝集成到自己的应用中,无论是实时转录还是处理预录的音频文件,都能得心应手。
享受使用Whisper ASR为您的Android应用增添离线语音识别功能的乐趣吧!