VOSK语音识别API使用教程
项目地址:https://gitcode.com/gh_mirrors/vo/vosk-api
项目介绍
VOSK是一个离线的开源语音识别工具包,支持超过20种语言和方言,包括英语、印度英语、德语、法语、西班牙语、葡萄牙语、中文、俄语、土耳其语、越南语、意大利语、荷兰语、加泰罗尼亚语、阿拉伯语、希腊语、波斯语、菲律宾语、乌克兰语、哈萨克语、瑞典语、日语、世界语、印地语、捷克语、波兰语、乌兹别克语、韩语、布列塔尼语、古吉拉特语、塔吉克语等。VOSK不仅支持轻量级设备如树莓派和Android设备,还支持服务器级应用。每个语言模型仅50MB,但提供了大型服务器模型。VOSK通过流式API提供最佳用户体验,支持多种编程语言如Python、Java、Node.js、C#、C++、Rust、Go等。
项目快速启动
安装VOSK
首先,确保你的系统上安装了Python 3。然后,通过pip安装VOSK:
pip3 install vosk
示例代码
以下是一个简单的Python示例,展示如何使用VOSK进行语音识别:
import os
import wave
from vosk import Model, KaldiRecognizer
# 下载并解压模型
if not os.path.exists("model"):
print("请下载模型并解压到当前目录")
exit(1)
wf = wave.open("test.wav", "rb")
if wf.getnchannels() != 1 or wf.getsampwidth() != 2 or wf.getcomptype() != "NONE":
print("音频文件必须是单声道WAV格式,16位PCM编码")
exit(1)
model = Model("model")
rec = KaldiRecognizer(model, wf.getframerate())
while True:
data = wf.readframes(4000)
if len(data) == 0:
break
if rec.AcceptWaveform(data):
print(rec.Result())
else:
print(rec.PartialResult())
print(rec.FinalResult())
应用案例和最佳实践
创建字幕
VOSK可以用于为电影创建字幕。通过识别音频流并实时生成文本,可以大大简化字幕制作过程。
智能助手
VOSK可以集成到智能助手应用中,实现语音控制和交互,提升用户体验。
教育领域
在教育领域,VOSK可以用于自动转录讲座和访谈,帮助学生更好地理解和回顾课程内容。
典型生态项目
Kaldi
Kaldi是一个强大的开源语音识别工具包,VOSK基于Kaldi构建,提供了更简化的API和更好的设备兼容性。
DeepSpeech
DeepSpeech是Mozilla开发的一个基于深度学习的语音识别系统,虽然它主要依赖于在线服务,但VOSK提供了离线解决方案,两者可以互补使用。
CMU Sphinx
CMU Sphinx是另一个流行的开源语音识别系统,VOSK在轻量级和多语言支持方面提供了更好的选择。
通过以上教程,你可以快速开始使用VOSK进行语音识别,并了解其在不同领域的应用和相关生态项目。