Serde 开源项目教程

Serde 开源项目教程

serdeSerde.NET is a C# port of the popular Serde serialization library for Rust项目地址:https://gitcode.com/gh_mirrors/serde/serde

项目介绍

Serde 是一个用于序列化和反序列化 Rust 数据结构的框架,它高效且通用。Serde 支持多种数据格式,如 JSON、YAML、MessagePack 等。通过简单的宏定义,可以轻松地将 Rust 结构体和枚举类型转换为各种数据格式,反之亦然。

项目快速启动

添加依赖

首先,在 Cargo.toml 文件中添加 Serde 和 Serde JSON 的依赖:

[dependencies]
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"

定义数据结构

定义一个简单的 Rust 结构体,并使用 Serde 的宏来实现序列化和反序列化:

use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize, Debug)]
struct Point {
    x: i32,
    y: i32,
}

序列化和反序列化

编写代码来序列化和反序列化 Point 结构体:

fn main() {
    let point = Point { x: 1, y: 2 };

    // 序列化
    let serialized = serde_json::to_string(&point).unwrap();
    println!("serialized = {}", serialized);

    // 反序列化
    let deserialized: Point = serde_json::from_str(&serialized).unwrap();
    println!("deserialized = {:?}", deserialized);
}

应用案例和最佳实践

应用案例

Serde 广泛应用于需要数据交换的场景,例如:

  • Web 服务:在客户端和服务器之间传递 JSON 数据。
  • 配置文件:读取和写入 YAML 或 TOML 格式的配置文件。
  • 数据存储:将数据序列化为二进制格式(如 MessagePack)进行存储。

最佳实践

  • 使用 #[derive(Serialize, Deserialize)]:对于简单的结构体和枚举类型,使用宏来自动生成序列化和反序列化代码。
  • 错误处理:在实际应用中,处理序列化和反序列化过程中可能出现的错误。
  • 选择合适的数据格式:根据需求选择最合适的数据格式,例如 JSON 适合文本数据,而 MessagePack 适合二进制数据。

典型生态项目

Serde 的生态系统包含多个相关的项目,这些项目扩展了 Serde 的功能,提供了更多的数据格式支持和工具:

  • Serde JSON:提供 JSON 格式的序列化和反序列化支持。
  • Serde YAML:提供 YAML 格式的序列化和反序列化支持。
  • Serde MessagePack:提供 MessagePack 格式的序列化和反序列化支持。
  • Serde TOML:提供 TOML 格式的序列化和反序列化支持。

这些项目共同构成了一个强大的数据处理工具集,适用于各种复杂的数据交换和存储需求。

serdeSerde.NET is a C# port of the popular Serde serialization library for Rust项目地址:https://gitcode.com/gh_mirrors/serde/serde

  • 13
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

管展庭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值