快速且内存占用小的词向量查询库:LMDB Embeddings

快速且内存占用小的词向量查询库:LMDB Embeddings

lmdb-embeddings ThoughtRiver/lmdb-embeddings: LMDB-Embeddings 是一个用于高效存储和查询词嵌入向量的库,采用了 LMDB 数据库来存储词嵌入向量,具有高速,紧凑和易用的特点。 lmdb-embeddings 项目地址: https://gitcode.com/gh_mirrors/lm/lmdb-embeddings

项目基础介绍

LMDB Embeddings 是一个基于 Python 的开源项目,旨在提供一种快速查询词向量(嵌入)的方法,同时大幅减少内存的使用。该项目的核心是利用 Lightning Memory-Mapped Database (LMDB) 实现高效的数据访问和存储。主要编程语言为 Python。

项目核心功能

  • 快速查询:通过 LMDB 的特性,预训练的词向量可以立即“预热”(无需加载时间),从而实现极快的查询速度。
  • 低内存占用:相比传统的存储方式,如 gensim 或其他类似解决方案,LMDB Embeddings 可以将内存占用降到最低。例如,传统的 glove-840B 需要大约 2 分钟加载时间和 4GB 内存,而使用 LMDB 后,可以立即访问且仅需数 MB 内存。
  • LRU 缓存:包含 LRU 缓存的读取器,能够缓存最近查询的 50,000 个词向量,避免重复查询数据库,从而进一步优化性能。
  • 自定义序列化:默认使用 pickle 进行序列化,但也可以轻松使用其他序列化方法,如 msgpack。

项目最近更新的功能

  • 支持 Raw 解码:最近的更新中,项目添加了对 Raw 解码的支持,以优化数据读取。
  • 性能优化:持续的性能优化,确保在固态硬盘(SSD)上使用时,运行时的性能损失降至最低(大约 1% 的减慢)。

项目持续更新,不断优化性能和添加新功能,为开发者提供更加高效和便捷的词向量查询工具。

lmdb-embeddings ThoughtRiver/lmdb-embeddings: LMDB-Embeddings 是一个用于高效存储和查询词嵌入向量的库,采用了 LMDB 数据库来存储词嵌入向量,具有高速,紧凑和易用的特点。 lmdb-embeddings 项目地址: https://gitcode.com/gh_mirrors/lm/lmdb-embeddings

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韶丰业

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值