快速且内存占用小的词向量查询库:LMDB Embeddings
项目基础介绍
LMDB Embeddings 是一个基于 Python 的开源项目,旨在提供一种快速查询词向量(嵌入)的方法,同时大幅减少内存的使用。该项目的核心是利用 Lightning Memory-Mapped Database (LMDB) 实现高效的数据访问和存储。主要编程语言为 Python。
项目核心功能
- 快速查询:通过 LMDB 的特性,预训练的词向量可以立即“预热”(无需加载时间),从而实现极快的查询速度。
- 低内存占用:相比传统的存储方式,如 gensim 或其他类似解决方案,LMDB Embeddings 可以将内存占用降到最低。例如,传统的 glove-840B 需要大约 2 分钟加载时间和 4GB 内存,而使用 LMDB 后,可以立即访问且仅需数 MB 内存。
- LRU 缓存:包含 LRU 缓存的读取器,能够缓存最近查询的 50,000 个词向量,避免重复查询数据库,从而进一步优化性能。
- 自定义序列化:默认使用 pickle 进行序列化,但也可以轻松使用其他序列化方法,如 msgpack。
项目最近更新的功能
- 支持
Raw
解码:最近的更新中,项目添加了对Raw
解码的支持,以优化数据读取。 - 性能优化:持续的性能优化,确保在固态硬盘(SSD)上使用时,运行时的性能损失降至最低(大约 1% 的减慢)。
项目持续更新,不断优化性能和添加新功能,为开发者提供更加高效和便捷的词向量查询工具。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考