论文笔记 | Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks

Sentence-BERT(SBERT)通过使用Siamese BERT网络结构改进了BERT,解决了BERT在大规模语义相似度任务中的高计算开销问题。SBERT的sentence embeddings可以直接通过余弦相似度计算两个句子的相似度,显著提高了效率。在多个STS任务和迁移学习任务上,SBERT达到了新的SOTA水平。
摘要由CSDN通过智能技术生成

在这里插入图片描述


作者:迪

单位:燕山大学


论文地址

代码地址

论文来源:EMNLP2019


前言

  虽然BERT和RoBERTa在诸如文本语义相似度等任务上达到了SOTA效果,但是它们还存在一些缺点:在这些任务中,它们需要将比较的两个句子都传入到模型中计算,计算开销过大。BERT模型在一个1W句子集合中,找出最相近的一个句子对,需要5千万次推断计算(约65小时)才能完成,所以BERT并不适合语义相似度搜索等任务。

  在该论文中,作者提出了一个新的模型,Sentence-BERT(简称SBERT)。SBERT采用双重(孪生)或三重BERT网络结构。通过SBERT模型获取到的句子embedding,可以直接通过余弦相似度计算两个句子的相似度,这样就大大减少了计算量。因为在使用BERT模型进行句子间相似度的判断时,需要从句子集合中,选出两个句子进行组合,传入BERT中进行计算,而使用SBERT模型,只需要将集合中每个句子单独传入到模型中,得到每个句子的embeding,计算相似度只需要使用cos函数计算两两embedi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值