作者:迪
单位:燕山大学
论文来源:EMNLP2019
前言
虽然BERT和RoBERTa在诸如文本语义相似度等任务上达到了SOTA效果,但是它们还存在一些缺点:在这些任务中,它们需要将比较的两个句子都传入到模型中计算,计算开销过大。BERT模型在一个1W句子集合中,找出最相近的一个句子对,需要5千万次推断计算(约65小时)才能完成,所以BERT并不适合语义相似度搜索等任务。
在该论文中,作者提出了一个新的模型,Sentence-BERT(简称SBERT)。SBERT采用双重(孪生)或三重BERT网络结构。通过SBERT模型获取到的句子embedding,可以直接通过余弦相似度计算两个句子的相似度,这样就大大减少了计算量。因为在使用BERT模型进行句子间相似度的判断时,需要从句子集合中,选出两个句子进行组合,传入BERT中进行计算,而使用SBERT模型,只需要将集合中每个句子单独传入到模型中,得到每个句子的embeding,计算相似度只需要使用cos函数计算两两embedi