VIDEVAL: 开源视频质量评估工具
开源项目名称:VIDEVAL
主要编程语言:MATLAB、Python
项目基础介绍
VIDEVAL 是一个基于 MATLAB 和 Python 的开源视频质量评估工具,旨在为用户生成内容(User Generated Content,UGC)提供盲视频质量评估(Blind Video Quality Assessment,BVQA)的基准测试。该项目的核心是提出了一种名为 VIDEVAL 的特征融合视频质量评估方法,并在 IEEE Transactions on Image Processing 2021 年发表的相关论文中进行了详细介绍。VIDEVAL 旨在准确评估 UGC 的视频质量,并在不同的数据集上进行了广泛测试,以验证其性能和效率。
核心功能
- 特征提取:VIDEVAL 提供了从视频数据中提取特征的功能,这些特征可以用于后续的视频质量预测。
- 质量预测:基于提取的特征,VIDEVAL 可以预测视频的客观质量分数(Mean Opinion Score,MOS)。
- 模型评估:VIDEVAL 包含了对BVQA模型进行评估的代码,可以通过不同的数据集来测试模型的性能。
- 轻量级版本:为了提高处理高分辨率和高帧率视频的效率,VIDEVAL 还提供了一个轻量级版本 VIDEVAL_light,该版本在性能和速度之间进行了权衡。
最近更新的功能
- 功能校准:在最近的一次更新中,项目添加了用于校准数据集 MOS(Mean Opinion Score)的代码,具体细节可以在
inlsa/
目录中找到。 - 轻量级版本更新:VIDEVAL_light 版本进行了更新,提供了不同分辨率和帧率下的性能和速度折衷选择,使得用户可以根据具体的应用场景调整参数。
VIDEVAL 的持续更新和优化展示了开源社区对于提高视频质量评估技术的承诺,为研究和开发人员提供了一个宝贵的工具。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考