电动车进入电梯数据集、自行车进入电梯数据集 电动车进入电梯VOC数据标注数据集 本项目作为一个小科研课题,分析当前电梯禁入电动车和自行车监控情况,搜集市场上的一些关键性,且有用的数据集,并对数据集进行了标注工作,数据集的格式声明: 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)。
Kalman算法、扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)的比较 计算复杂度:EKF通常计算复杂度较低,而UKF计算复杂度较高。处理非线性能力:UKF在处理高度非线性系统时表现更好,精度更高;EKF在非线性程度不高的系统中也能有效工作。实现复杂度:EKF需要计算雅可比矩阵,这在某些情况下较复杂;UKF不需要计算雅可比矩阵,但需要生成和处理sigma点,逻辑上更复杂。
Python有哪些好用的自动化库 这些库各有特点,选择合适的库可以根据具体的需求和使用场景来决定。如果你需要一个简单易用的库进行桌面和网页自动化,PyAutoGUI和SikuliX是不错的选择;如果你需要企业级的复杂自动化解决方案,Robocorp和UiPath可能更适合。Python有几个非常好用的RPA(机器人流程自动化)库,这些库可以帮助你自动化许多日常任务。
机载坐标与大地坐标的转换 大地坐标是指以地球为基准点的坐标系统,常用的大地坐标系统有经纬度坐标系统和投影坐标系统。需要注意的是,机载坐标与大地坐标的转换需要考虑地球椭球体的形状和大地水准面的变化等因素,因此通常需要使用复杂的数学计算方法或者专业的地理坐标转换工具来进行计算。根据机载坐标系中的坐标轴方向和大地坐标系中的经纬度范围,计算出机载坐标系中的坐标点与大地坐标系中的经纬度坐标的转换关系。根据机载坐标系中的坐标轴方向和大地坐标系中的经纬度范围,计算出机载坐标系中的坐标点与大地坐标系中的经纬度坐标的转换关系。
视频质量诊断服务 && 视频质量诊断工具 && 图像/视频质量分析服务及工具 && 深度学习视频质量分析系统 基于Mongoose平台搭建了视频质量服务系统,该系统的主要功能包含生成base64图像数据、接收postman的数据参数推送、视频质量算法分析以及处理结果的指定地址推送功能,该系统已经在windows、centos、kylin、ubuntu等系统上做过相关适配工作,算法已经达到商业级应用需求。 这次把之前积累的单机版工具和算法的server版本都做了说明,并记录一下自己的成果,深度学习数据搜集以及模型精度提高方法。
Flask框架下图像的base64编码接收和解码流程 Flask是一个轻量级的可定制框架,使用Python语言编写,较其他同类型框架更为灵活、轻便、安全且容易上手。它可以很好地结合进行开发,开发人员分工合作,小型团队在短时间内就可以完成功能丰富的中小型网站或的实现。另外,Flask还有很强的定制性,用户可以根据自己的需求来添加相应的功能,在保持核心功能简单的同时实现功能的丰富与扩展,其强大的插件库可以让用户实现个性化的网站定制,开发出功能强大的网站。
FLAML框架学习干货整理 FLAML (Fast and Lightweight AutoML) 是一个用于自动机器学习(AutoML)的 Python 库,旨在快速且资源效率高地找到机器学习任务的最优模型和其超参数。它由微软研究院开发,适用于广泛的机器学习任务,如分类、回归和时间序列预测。
【Yolov8 Opencv C++系列保姆教程】Yolov8 opencv c++ 版本保姆教程,Yolov8训练自己的数据集,实现红绿灯识别及红绿灯故障检测 ,红绿灯故障识别。 Yolov8 Opencv C++系列保姆教程,通过一个红绿灯识别的案例,实现了Yolov8 的应用全流程的过程,整个算法最终只依赖了opencv,部署会更加方便、易用。 基于Yolov8训练自己的数据集,实现红绿灯识别及红绿灯故障检测 ,红绿灯故障识别。
VS2019+OpenCV4.7.0+OpenCV_contrib4.7.0+CUDA安装+配置视频硬解码保姆级别教程 在算法开发过程中,涉及基于opencv的rtsp流硬解码,这里设计结合当前所有的资料,实现了现有opengl相关的所有跟视频硬解码相关的功能,下面对opencv4.7.0的编译流程进行说明。 VS2019+OpenCV4.7.0+OpenCV_contrib4.7.0+CUDA安装+配置视频硬解码保姆级别教程。
非常好用的C++跨平台网络通信Mongoose,随笔记录 简介Mongoose 是一个 C/C++ 网络库。它实现了事件驱动, TCP、UDP、HTTP、WebSocket、MQTT 的非阻塞 API。它连接设备 并将它们带到网上。自 2004 年以来,一些开源和商业 产品已经利用了它。它甚至运行在 国际空间站!Mongoose 使嵌入式网络编程变得快速, 坚固且简单。Mongoose 适用于 Windows、Linux、Mac 和许多嵌入式架构 如STM32、NXP、TI、ESP32等。
VQD视频质量诊断服务/图像质量诊断/视频流质量诊断/传统方法与深度学习结合的视频质量诊断 主要研究视频质量诊断系统中的诊断算法。主要有:亮度异常检测、对比度异常检测、偏色异常检测、清晰度异常检测、噪声异常检测、条纹异常检测、冻结异常检测、信号丢失异常检测、遮挡异常检测、黑白图像异常检测、场景变更异常检测和场景剧变异常等12项常见的检测功能。经过多年的积累,单从传统的方法已经很难把一些特殊情况的异常事件检测出来,需要把传统的方法与深度学习的方法结合起来进行使用,传统的方法和深度学习的方法已经在我的之前的csdn的博客里已经介绍,只需要把两者按照一定的经验值结合起来即可,下面是一些结合后的用例。
Ubuntu22.04 Opencv4.5.1 CPU和GPU编译攻略,Opencv CPU和GPU编译保姆教程 亲自测试。 Ubuntu22.04 Opencv4.5.1 CPU和GPU编译攻略,Opencv CPU和GPU编译保姆教程 亲自测试通过。
AI标注工具Labelme和LabelImage Labelme和LabelImage集成工具 为了方便大家的使用,我在其他网站上找到了在windows平台上可以运行的工具labelImg.exe和labelme.exe,直接双击就可以使用。Labelme是标注目标轮廓,而LabelImage则是标注目标的区域,然而使用原生态的工具,需要用到python命令行,十分麻烦。