自动攻击(Auto-Attack): 深度学习模型的健壮性评估利器
auto-attack 项目地址: https://gitcode.com/gh_mirrors/au/auto-attack
项目基础介绍与编程语言
自动攻击(Auto-Attack) 是一个强大的Python编写的开源工具,旨在提供对深度学习模型的可靠健壮性评价。这个项目基于GitHub平台,采用主流的Python编程语言,并利用了诸如PyTorch这样的库来实现其核心功能。它专注于构建一个无需额外参数调整的多样化的攻击集合,从而简化并标准化对抗性健壮性测试流程。
核心功能
Auto-Attack的主要亮点在于它的自动化和多样性。该工具通过集成四种高效的攻击方法——APGD-CE、APGD-DLR、FAB以及Square Attack——确保了模型健壮性的全面评估。这些攻击策略覆盖了从白盒到黑盒的不同场景,且特别设计了不依赖于特定步长设置的版本,以增强其泛用性和准确性。通过这种多攻击组合,Auto-Attack能够更准确地揭示模型的真实防御能力,而不需要用户进行繁琐的手动超参数调优。
最近更新的功能
截至最新记录,Auto-Attack进行了重要的功能升级和适应性改进,包括:
- 自动检查机制:增加了智能检查功能,以识别标准版AutoAttack可能不适用或不足以评价健壮性的场景。
- 支持更多威胁模型:扩展了对L1范数下的攻击的支持,并发布了针对APGD和Square Attack的扩展版本。
- 适应大规模数据集:优化了AutoAttack,使其能高效处理具有大量类别的数据集,如通过引入针对APGD-DLR和FAB的目标版本来提高评估速度和精度。
- 集成Robustbench:成为Robustbench的新基准测试的标准评估工具,进一步确立其在健壮性评估领域的地位,提供了模型动物园中的模型评价服务。
通过这些更新,Auto-Attack持续巩固了自己作为评估神经网络健壮性不可或缺的开源工具的地位,为研究人员和开发者提供了一个强大而易用的平台,促进了深度学习安全性的研究和发展。
auto-attack 项目地址: https://gitcode.com/gh_mirrors/au/auto-attack