AVX-AVX2-Example-Code 项目安装和配置指南

AVX-AVX2-Example-Code 项目安装和配置指南

AVX-AVX2-Example-Code Example code for Intel AVX / AVX2 intrinsics. AVX-AVX2-Example-Code 项目地址: https://gitcode.com/gh_mirrors/avx/AVX-AVX2-Example-Code

1. 项目基础介绍和主要编程语言

项目基础介绍

AVX-AVX2-Example-Code 是一个开源项目,旨在提供 Intel AVX(高级矢量扩展)和 AVX2 指令集的示例代码。这些指令集是 Intel 处理器上用于加速浮点运算和整数运算的扩展指令集。通过这些示例代码,开发者可以学习和理解如何使用这些指令集来优化他们的代码性能。

主要编程语言

该项目主要使用 C 语言编写,因为 C 语言能够直接与底层硬件交互,非常适合编写高性能的代码。

2. 项目使用的关键技术和框架

关键技术

  • Intel AVX 和 AVX2 指令集:这些指令集提供了对 SIMD(单指令多数据)操作的支持,可以显著提高浮点运算和整数运算的性能。
  • SIMD 编程:通过 SIMD 编程,可以在单个指令周期内处理多个数据元素,从而提高计算效率。

框架

该项目没有使用特定的框架,主要依赖于 C 语言的标准库和 Intel 提供的 AVX/AVX2 内在函数。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

在开始安装和配置之前,请确保您的系统满足以下要求:

  • 操作系统:支持 AVX 和 AVX2 指令集的 Linux 或 Windows 操作系统。
  • 编译器:支持 AVX 和 AVX2 指令集的 C 语言编译器,如 GCC 或 Clang。
  • 开发环境:安装了基本的开发工具,如 make 和 git。

详细安装步骤

步骤 1:克隆项目仓库

首先,您需要将项目代码克隆到本地。打开终端并执行以下命令:

git clone https://github.com/Triple-Z/AVX-AVX2-Example-Code.git
步骤 2:进入项目目录

克隆完成后,进入项目目录:

cd AVX-AVX2-Example-Code
步骤 3:编译项目

在项目根目录下,使用 make 命令编译项目:

make

这将编译所有源文件,并在 bin/ 目录下生成可执行文件。

步骤 4:运行示例程序

编译完成后,您可以通过以下命令运行示例程序:

make run

这将执行所有生成的可执行文件,并在终端上显示输出结果。

步骤 5:清理生成的文件

如果您想清理所有生成的文件,可以使用以下命令:

make clean

这将删除所有生成的可执行文件和中间文件。

总结

通过以上步骤,您已经成功安装并配置了 AVX-AVX2-Example-Code 项目。您可以通过运行示例程序来学习和理解 Intel AVX 和 AVX2 指令集的使用方法。希望这个指南对您有所帮助!

AVX-AVX2-Example-Code Example code for Intel AVX / AVX2 intrinsics. AVX-AVX2-Example-Code 项目地址: https://gitcode.com/gh_mirrors/avx/AVX-AVX2-Example-Code

To use AVX2 instructions to accelerate this code, we need to identify the parts of the code that can be parallelized and vectorized. One potential candidate is the image warping operations (i.e., `warpAffine` function calls). To use AVX2 instructions, we need to use the `cv::parallel_for_` function to parallelize the loop that applies the warping operations to each pixel in the image. Next, we need to vectorize the code inside the loop using AVX2 instructions. We can use the `cv::v_load` function to load 8 consecutive pixels (assuming a 8-byte data type) into an AVX2 register, and the `cv::v_gather` function to gather non-consecutive pixels into an AVX2 register. We can then perform the necessary arithmetic operations using AVX2 instructions and store the results back to memory using the `cv::v_store` function. Here is an example of how the code inside the loop can be vectorized using AVX2 instructions: ```cpp __m256i vindex = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); for (int i = 0; i < src.rows; i++) { uchar* src_ptr = src.ptr<uchar>(i); uchar* dst_ptr = dst.ptr<uchar>(i); for (int j = 0; j < src.cols; j += 8) { __m256i vsrc = cv::v_load(src_ptr + j); __m256i vx = _mm256_add_epi32(_mm256_mul_epu32(_mm256_cvtepu8_epi32(vindex), vx_step), vx_offset); __m256i vy = _mm256_add_epi32(_mm256_mul_epu32(_mm256_cvtepu8_epi32(vindex), vy_step), vy_offset); __m256i vx_lo = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(vx, 0)); __m256i vx_hi = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(vx, 1)); __m256i vy_lo = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(vy, 0)); __m256i vy_hi = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(vy, 1)); __m256i vx_lo_32 = _mm256_cvtepi64_epi32(vx_lo); __m256i vx_hi_32 = _mm256_cvtepi64_epi32(vx_hi); __m256i vy_lo_32 = _mm256_cvtepi64_epi32(vy_lo); __m256i vy_hi_32 = _mm256_cvtepi64_epi32(vy_hi); __m256i vsrc00 = cv::v_gather(src_ptr, src_step, vx_lo_32, vy_lo_32, _mm256_setzero_si256(), 1); __m256i vsrc01 = cv::v_gather(src_ptr, src_step, vx_hi_32, vy_lo_32, _mm256_setzero_si256(), 1); __m256i vsrc10 = cv::v_gather(src_ptr, src_step, vx_lo_32, vy_hi_32, _mm256_setzero_si256(), 1); __m256i vsrc11 = cv::v_gather(src_ptr, src_step, vx_hi_32, vy_hi_32, _mm256_setzero_si256(), 1); __m256i vsrc0 = _mm256_packs_epi32(vsrc00, vsrc01); __m256i vsrc1 = _mm256_packs_epi32(vsrc10, vsrc11); __m256i vsrc = _mm256_packus_epi16(vsrc0, vsrc1); cv::v_store(dst_ptr + j, vsrc); } } ``` Note that this is just an example, and the actual implementation may depend on the specifics of the code and the hardware platform.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江苏群

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值