pygmo 项目技术文档

pygmo 项目技术文档

pygmo2 A Python platform to perform parallel computations of optimisation tasks (global and local) via the asynchronous generalized island model. pygmo2 项目地址: https://gitcode.com/gh_mirrors/py/pygmo2

1. 安装指南

1.1 使用 pip 安装

pygmo 可以通过 pip 进行安装。打开终端并运行以下命令:

pip install pygmo

1.2 使用 conda 安装

如果你使用的是 Anaconda 或 Miniconda,可以通过 conda 进行安装。运行以下命令:

conda install -c conda-forge pygmo

1.3 从源码安装

如果你需要从源码进行安装,可以按照以下步骤操作:

  1. 克隆 pygmo 的 GitHub 仓库:

    git clone https://github.com/esa/pygmo2.git
    
  2. 进入项目目录:

    cd pygmo2
    
  3. 安装依赖项并编译:

    pip install -r requirements.txt
    python setup.py install
    

2. 项目使用说明

pygmo 是一个用于大规模并行优化的科学 Python 库。它提供了一个统一的接口,用于优化算法和优化问题,并使其在并行环境中易于部署。

2.1 基本使用

以下是一个简单的示例,展示了如何使用 pygmo 进行优化:

import pygmo as pg

# 定义一个优化问题
prob = pg.problem(pg.rosenbrock(dim=10))

# 选择一个优化算法
algo = pg.algorithm(pg.de(gen=100))

# 创建一个种群
pop = pg.population(prob, size=20)

# 运行优化
pop = algo.evolve(pop)

# 输出最优解
print(pop.champion_f)

2.2 自定义问题

你可以通过继承 pygmo.problem 类来自定义优化问题。以下是一个简单的自定义问题示例:

import pygmo as pg

class MyProblem:
    def fitness(self, x):
        return [sum(x), sum(x**2)]

    def get_bounds(self):
        return ([-1, -1], [1, 1])

prob = pg.problem(MyProblem())

3. 项目 API 使用文档

3.1 主要类和方法

  • pygmo.problem: 用于定义优化问题。
  • pygmo.algorithm: 用于选择和配置优化算法。
  • pygmo.population: 用于创建和管理种群。
  • pygmo.island: 用于在并行环境中运行优化。

3.2 常用方法

  • fitness(x): 计算给定解的适应度。
  • get_bounds(): 返回问题的边界。
  • evolve(pop): 运行优化算法并更新种群。
  • champion_f: 返回种群中的最优解。

4. 项目安装方式

pygmo 可以通过 pip、conda 或从源码进行安装。具体安装方式请参考第 1 节中的详细说明。


通过以上文档,你应该能够顺利安装和使用 pygmo 项目。如果在使用过程中遇到任何问题,可以参考项目的完整文档或加入 Gitter 聊天室进行交流。

pygmo2 A Python platform to perform parallel computations of optimisation tasks (global and local) via the asynchronous generalized island model. pygmo2 项目地址: https://gitcode.com/gh_mirrors/py/pygmo2

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

支旭望Imogene

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值