半个冯博士
码龄13年
  • 186,200
    被访问
  • 107
    原创
  • 207,034
    排名
  • 1,304
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2009-03-25
博客简介:

半个冯博士

查看详细资料
  • 4
    领奖
    总分 924 当月 64
个人成就
  • 获得312次点赞
  • 内容获得55次评论
  • 获得1,377次收藏
创作历程
  • 10篇
    2021年
  • 99篇
    2020年
成就勋章
TA的专栏
  • Sklearn
    7篇
  • Pandas简明教程-适用于竞赛、研究以及办公自动化
    11篇
  • 模糊数学
    12篇
  • Python数值计算
    5篇
  • 机器学习数学基础
    1篇
  • 高等数学疑难杂症
    5篇
  • 数据结构源码笔记(C语言)
    40篇
  • 技术杂谈
    19篇
  • 灰色模型编程实战
    2篇
  • 高数习题
    5篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络pytorch数据分析scikit-learn集成学习迁移学习回归
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

使用scipy实现简单神经网络

使用scipy实现简单神经网络1、准备工作(1)导入必要的库:numpy - 用于基本的数据操作scipy.optimize 中导入 minimize函数,用于训练模型matplotlib 用于数据可视化import numpy as npfrom scipy.optimize import minimizeimport matplotlib.pyplot as plt(2) 数据准备首先需要设置的参数:N– 样本个数d– 输入样本的维度num_hidden --隐函层的个
原创
发布博客 2021.09.12 ·
180 阅读 ·
2 点赞 ·
0 评论

Python函数作为参数传递给函数

Python中一切皆对象(object).–Dive Into Python既然一切皆对象,那么一切都可以作为参数传递!1、定义两个简单的函数函数1–add_params(a,b):a,b两个数字返回:a+b函数2–mult_params(func,a,b,c):a,b,c 为数字,func是函数返回:func(a,b)*cdef add_params(a,b): return a+bdef mult_params(func,a,b,c): return func
原创
发布博客 2021.08.15 ·
392 阅读 ·
2 点赞 ·
0 评论

CSSCI完整目录

南大官方地址:https://cssrac.nju.edu.cn/cpzx/zwshkxywsy/index.html选中要查看的版本下载即可。
原创
发布博客 2021.08.04 ·
75 阅读 ·
0 点赞 ·
0 评论

MacBook(m1)配置Python注意事项(自用,持续更新)

1、安装Anaconda和PyTorch实际上是安装conda,这个直接参考码农家园的这个贴子即可:在M1 Mac上安装Pytorch注意事项:(1)如果不修改配置文件,那么在启动虚拟环境时需要用:source conda activate myenv所以最好是对配置文件进行修改。修改时其实也不必非要用vim,用任何文本编辑器都可以修改。(2)安装时版本号要对上,目前测试发现python3.9似乎没什么问题(3)上述贴子还可以直接解决pytorch安装的问题。2、安装sklearn这是
原创
发布博客 2021.07.10 ·
2208 阅读 ·
2 点赞 ·
0 评论

利用Python实现矩阵乘法并与numpy的结果比较

文章目录1、导入numpy库备用2、生成两个随机矩阵3、用`list` 实现矩阵相乘4、直接采用`numpy`矩阵乘法5、算法结果比较6、结论1、导入numpy库备用import numpy as np2、生成两个随机矩阵a = np.random.rand(1000,1000)b = np.random.rand(1000,1000)3、用list 实现矩阵相乘%%timec = [[sum(i*j) for j in b.T] for i in a]Wall time
原创
发布博客 2021.05.03 ·
234 阅读 ·
1 点赞 ·
0 评论

Python计算本周是第几周

原理: 利用 datetime 的减法,获取两个日期(精确到日)之间的天数,再除以7即可:from datetime import datetime# 起始日期,可自行修改st_date = datetime(2020,1,1)today = datetime.today()d_days = today - st_dateprint(d_days.days//7)注意事项:如果起始日期不是第一周的周一,则要将起始日期设为该周的第周一的日期两个日期相减的本质是时间戳的减法,其结果
原创
发布博客 2021.05.02 ·
771 阅读 ·
0 点赞 ·
0 评论

用numpy autograd 实现牛顿迭代

文章目录1、 导入包库2、定义函数3、使用`autograd`定义导数4、实现牛顿迭代5、用`scipy`对应方法检验结果6、小结考虑非线性方程:f(x)=sin⁡(x)−e−x=0 f(x)= \sin(x) - \mathrm{e}^{-x}=0f(x)=sin(x)−e−x=01、 导入包库import autograd.numpy as np from autograd import gradimport matplotlib.pyplot as plt2、定义函数de
原创
发布博客 2021.04.30 ·
219 阅读 ·
3 点赞 ·
10 评论

VSCODE中调试jupyter notebook

发布视频 2021.04.23

在宇宙第一IDE中编辑LaTeX

发布视频 2021.04.23

区间数计算之Python实现

先粘代码,空了再来整说明。区间数的定义参考:模糊数学笔记:八、模糊数及其运算性质# -*- coding: utf-8 -*-"""区间数计算.ipynbAutomatically generated by Colaboratory.Original file is located at https://colab.research.google.com/drive/1VC_Px3l3pLg4f0RWQF3xz2wWdWM1Jynf"""class IntervalNumber
原创
发布博客 2021.04.15 ·
354 阅读 ·
0 点赞 ·
0 评论

autograd库测试笔记-(一个基于Numpy的自动求导库)

导入 autograd 库,同时导入这个库里的numpy(应该是作者自己把numpy放入了这个库的命名空间里面)以及逐项求导elementwise_grad。from autograd import gradimport autograd.numpy as npfrom autograd import elementwise_grad接下来定义第一个函数,这个函数非常简单,其实就是一个线性变换:yn×l=Xn×dwd×l \mathbf{y}_{n\times l} = \mathbf{X
原创
发布博客 2021.04.11 ·
455 阅读 ·
0 点赞 ·
1 评论

用Python实现Gauss-Jordan求逆矩阵

Python Gauss-Jordan求逆源码import numpy as npn = 5a = np.random.rand(n,n)*10-5 + np.eye(n)*10I = np.eye(n)A = a.copy()for i in range(n): if A[i][i] == 0.0: sys.exit('Divide by zero detected!') for j in range(n): if i != j: rat
原创
发布博客 2021.03.06 ·
479 阅读 ·
0 点赞 ·
0 评论

用Python实现模糊聚类(传递闭包法)

FuzzyPy-模糊聚类(传递闭包法)文章目录**FuzzyPy-模糊聚类(传递闭包法)****一、传递闭包法的操作步骤****二、关键技术分析与准备工作**1、涉及的主要编程技术和模糊数学的计算方法2、准备工作**三、实现步骤**1、导入相关库2、生成相似矩阵3、计算传递闭包4、筛选传递闭包的所有元素并排序5、算出所有截矩阵、分类、记录分类结果6、输出聚类报告**四、技术总结**一、传递闭包法的操作步骤第一步: 计算相似矩阵 RRR 的传递闭包。即依次计算 R2R^2R2、R4R^4R4、…,当
原创
发布博客 2020.11.06 ·
3698 阅读 ·
8 点赞 ·
12 评论

Markdown与 $\LaTeX$ 公式的使用入门指南

文章目录一、Markdown是什么?二、Markdown编辑工具三、Markdown基本语法简介1、文档结构相关2、表格3、图片4、插入代码5、添加脚注6、文档目录7、与`html`的兼容8、其它四、在Markdown中使用数学公式1、基本用法2、高级用法3、全世界最好用的在线免费 LaTeX\LaTeXLATE​X 辅助工具五、Markdown与其它类型文件的转换写在最后一、Markdown是什么?Markdown是一种轻量级标记语言,创始人为约翰·格鲁伯(英语:John Gruber)。 它允许人们
原创
发布博客 2020.10.02 ·
597 阅读 ·
3 点赞 ·
0 评论

说说牛顿迭代 -- 方法篇

说说牛顿迭代 – 方法篇写这个笔记主要是最近老在考虑最优化问题。今天刚好发现一个不错的手写公式的工具,加上前几天又发现Win10的Windows Ink比我想象得好用,于是来描几笔。主要是想试试这样写起来速度如何。现在高数也要介绍牛顿法了,一般都是从几何上直接以“切线法”直接引入的。这种引入方式的确很简单,但如果脱离深入一点的分析就不大容易解释后面的事情。所以就在想怎么更直接地从分析的角度来一条线贯穿,把整个过程说一说。直接开始:一、牛顿迭代解非线性方程考虑一个非线性方程:f(x)=0(*)f
原创
发布博客 2020.09.06 ·
437 阅读 ·
1 点赞 ·
0 评论

洛必达法则使用前提

文章目录0、洛必达法则使用的前提1、 不是不定型,肯定不能用2、未化成分式,肯定不能用3、不降反升次,越洛越桑心4、永无宁日的Shi循环5、标准不定型中混入看似可忽略的项,也有可能出现Shi循环0、洛必达法则使用的前提其实这个问题非常简单,就一句话:如果一个极限能够最终转化为00,∞∞\frac{0}{0},\frac{\infty}{\infty}00​,∞∞​时,那么就可以使用洛必达法则进行计算。注意:这里只是说可以,也就是说它只是充分条件!!!具体有哪些它不能使用的情况呢?1、 不是不定
原创
发布博客 2020.08.17 ·
5484 阅读 ·
37 点赞 ·
2 评论

万字长文让你看够幂级数

文章目录一、幂级数是什么?二、常见的幂级数三、幂级数重要结论:在收敛域内可逐项求导和积分四、用幂级数求数项级数的和五、用幂级数求数列通项公式六、用幂级数解微分方程一、幂级数是什么?由常数项乘以幂函数组成的无穷级数:∑n=0∞cnxn=c0+c1x+c2x2+c3x3+…\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldotsn=0∑∞​cn​xn=c0​+c1​x+c2​x2+c3​x3+…它在(−R
原创
发布博客 2020.08.16 ·
613 阅读 ·
10 点赞 ·
0 评论

解释一下积分变上限函数

本文从以下几个方面讨论这个问题什么是变上限函数?它如何求导?广义的变上限函数求导方法–用牛莱公式一步到位!1、积分上限函数的通俗理解先看个例子:考虑一个定积分:A(b)=∫abf(t)dt​(1)A(b)=\int_{a}^{b} f(t) d t \tag{1} ​A(b)=∫ab​f(t)dt​(1)如果把的上限在变化的话,那么这个过程就应该是这样的:图片来自网络侵删。上图其实是变上限函数 A(b)=∫abf(t)dtA(b)=\int_{a}^{b} f(t) d tA(
原创
发布博客 2020.08.16 ·
16528 阅读 ·
51 点赞 ·
4 评论

有限个极限运算及常见错误小结

文章目录一、极限运算法则回顾二、四则运算中常犯的问题三、无穷小常犯的问题四、洛必达常犯的问题初学极限运算的时候初学者总会犯一些问题,尤其当课程进度推进时,各种知识、方法不断出现,这时如果掌握不牢固就很容易把自己弄晕。其实要掌握这些运算方法并不困难,记住这个要领:各种运算法则的使用前提是每个步骤中涉及的极限一定都要存在是这些运算的前提(如果有分母,那么分母一定不能为零)。(无限个极限的情形单独讨论)本文先总结把极限运算的各种常用方法,再针对一些具体的疑难点进行分解讲解。大家可以根据自己的实际情况选择性阅读
原创
发布博客 2020.08.15 ·
1075 阅读 ·
0 点赞 ·
0 评论

如何理解数列极限和收敛性

如何理解数列极限和收敛性数列极限说来其实都不陌生,但往往到了高数的这段内容的时候许多人就会觉得非常头疼了。定义:设 {xn}\left\{x_{n}\right\}{xn​} 为一数列,如果存在常数 aaa, 对于任意给定的正数 ε\varepsilonε ( 不论它多么小 ),总存在正整数 NNN, 使得 当 n>Nn>Nn>N 时, 有以下不等式成立:∣xn−a∣<ε(1)\left|x_{n}-a\right|<\varepsilon\tag{1}∣xn​−a
原创
发布博客 2020.08.13 ·
2873 阅读 ·
5 点赞 ·
0 评论
加载更多