Android语音活动检测(VAD)技术文档
Android VAD库旨在实时处理音频,识别含噪声的人声是否存在,适用于音频样本中的语音与噪音混合情况。本库提供三种不同的VAD模型,分别是基于GMM的WebRTC VAD,基于DNN的Silero VAD以及同样利用DNN并结合Mobilenet_v1架构的Yamnet VAD。下面将详细介绍这三种模型的安装与使用方法。
安装指南
添加依赖
通过JitPack添加此库到您的Android项目中,首先在项目的build.gradle
文件的repositories部分添加JitPack仓库:
allprojects {
repositories {
...
maven { url 'https://jitpack.io' }
}
}
然后,在app模块的build.gradle
文件中添加对应依赖,并确保加入其他必要的依赖如ONNX Runtime和TensorFlow Lite(具体版本参照最新版本):
dependencies {
implementation 'com.github.gkonovalov:android-vad:<latest-version>'
implementation 'com.microsoft.onnxruntime:onnxruntime-android:1.15.1' // 对于Silero VAD
implementation 'org.tensorflow:tensorflow-lite-task-audio:0.4.0' // 对于Yamnet VAD
}
替换 <latest-version>
为您实际查找得到的最新版本号。
项目的使用说明
WebRTC VAD
- 初始化: 使用
Vad.builder()
设置所需参数,如采样率、帧大小和模式,之后调用.build()
。 - 基本使用: 调用
vad.isSpeech(audioData)
来判断一段音频是否包含语音。 - 连续监听: 设置
setContinuousSpeechListener
, 在用户说话或静音时触发回调。
Silero VAD
与WebRTC类似,但需注意适配ONNX Runtime环境,并且推荐参数有所不同。
Yamnet VAD
不仅能够执行VAD,还能分类音频事件。通过classifyAudio(audioData)
获取声音类别,并可设置针对特定类别的连续监听器。
项目API使用文档
-
WebRTC VAD API
setSampleRate(SampleRate)
: 设置采样率,如SampleRate.SAMPLE_RATE_16K
。setFrameSize(FrameSize)
: 设定帧大小,例如FRAME_SIZE_512
。setMode(Mode)
: 配置模式,有NORMAL
,LOW_BITRATE
,AGGRESSIVE
,VERY_AGGRESSIVE
可选。
-
Silero VAD API
- 包含相同的基本配置API,但采样率推荐为8kHz,框架尺寸为256。
-
Yamnet VAD API
- 初始化需要上下文(
setContext
)以访问模型文件。 - 分类功能支持更复杂的场景分析,返回结果包括声音类别和概率分数。
- 初始化需要上下文(
注意事项
- 兼容性: 确保所选用的VAD模型与您的目标Android API层级兼容。
- 资源管理: 不忘调用
vad.close()
释放资源。 - 性能考量: 根据应用需求选择最合适的模型,平衡精度与性能。
通过遵循上述指导,开发者可以有效地集成Android VAD功能,提升其应用程序在处理语音交互时的准确性和响应速度。