NSFW分类器项目安装与配置完全指南
nsfw 项目地址: https://gitcode.com/gh_mirrors/nsf/nsfw
项目基础介绍及编程语言
“Not Suitable for Work(NSFW)分类器”是由GitHub用户rockyzhengwu维护的一个开源项目。此项目旨在实现对不适合工作环境的内容进行自动分类,特别适用于图像识别领域。它通过深度学习方法对图片进行分析,判断其是否属于色情、性感、正常等类别。该项目主要采用Python作为编程语言,并利用TensorFlow作为其核心机器学习库。
关键技术和框架
- TensorFlow: 这是Google开发的开源机器学习库,用于构建和部署复杂的机器学习模型。
- ResNet (残差网络): 在项目中用于训练图像分类模型,这是一种高效的深度神经网络架构,能够解决深层神经网络中的梯度消失问题。
- Image Classification: 图像分类技术,将输入的图片分配到预定义的类别之一。
- TensorFlow Serving: 用于便捷地部署模型,提供高效的服务化预测能力。
安装和配置指南
准备工作
系统要求:
- 推荐使用Ubuntu 16.04+ 或 macOS 10.13+
- Python 3.6及以上版本
- pip 工具
安装必备软件包:
首先确保已安装Python及其pip工具。之后,更新pip至最新版本:
pip install --upgrade pip
安装TensorFlow(考虑到兼容性和稳定性,选择适合您的Python环境的稳定版本):
pip install tensorflow
对于TensorFlow Serving,可能需要特定版本,执行以下命令安装(具体版本号需参照官方文档或项目需求):
curl -sSL https://storage.googleapis.com/tensorflow-serving/releases/latest/download/tf_serving_x86_64.deb | sudo dpkg -i -
若遇到依赖性问题,使用apt-get install -f
修复。
克隆项目代码:
在本地创建一个目录来存放项目,并从GitHub克隆项目:
git clone https://github.com/rockyzhengwu/nsfw.git
cd nsfw
安装项目依赖
运行以下命令来安装项目所需的Python依赖:
pip install -r requirements.txt
配置并启动TensorFlow Serving
-
将训练好的模型转换为TensorFlow Serving可用的格式,如果项目未提供直接可使用的模型,则需要先按照项目的指示训练模型。
若已有模型文件,跳过训练步骤,直接找到或转换模型到正确的格式。
-
使用提供的脚本启动TensorFlow Serving服务:
./start_tensorflow_serving.sh
确保模型路径正确无误。
测试示例
在线预测测试:
- 将要测试的图片放置在指定路径(如
/tmp/test/test.jpeg
)。 - 执行预测脚本来获取分类结果:
此命令会输出图片的分类及其概率。python nsfw_predict.py /tmp/test/test.jpeg
调用服务端API测试(如果已设置):
可以通过编写简单的客户端脚本来调用TensorFlow Serving API,使用项目内提供的 serving_client.py
示例。
至此,您已成功设置了NSFW图像分类器,可以开始使用它进行图像分类了。记住,合理使用此类技术,遵守相关法律法规和道德规范。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考