NSFW分类器项目安装与配置完全指南

NSFW分类器项目安装与配置完全指南

nsfw nsfw 项目地址: https://gitcode.com/gh_mirrors/nsf/nsfw

项目基础介绍及编程语言

“Not Suitable for Work(NSFW)分类器”是由GitHub用户rockyzhengwu维护的一个开源项目。此项目旨在实现对不适合工作环境的内容进行自动分类,特别适用于图像识别领域。它通过深度学习方法对图片进行分析,判断其是否属于色情、性感、正常等类别。该项目主要采用Python作为编程语言,并利用TensorFlow作为其核心机器学习库。

关键技术和框架

  1. TensorFlow: 这是Google开发的开源机器学习库,用于构建和部署复杂的机器学习模型。
  2. ResNet (残差网络): 在项目中用于训练图像分类模型,这是一种高效的深度神经网络架构,能够解决深层神经网络中的梯度消失问题。
  3. Image Classification: 图像分类技术,将输入的图片分配到预定义的类别之一。
  4. TensorFlow Serving: 用于便捷地部署模型,提供高效的服务化预测能力。

安装和配置指南

准备工作

系统要求:
  • 推荐使用Ubuntu 16.04+ 或 macOS 10.13+
  • Python 3.6及以上版本
  • pip 工具
安装必备软件包:

首先确保已安装Python及其pip工具。之后,更新pip至最新版本:

pip install --upgrade pip

安装TensorFlow(考虑到兼容性和稳定性,选择适合您的Python环境的稳定版本):

pip install tensorflow

对于TensorFlow Serving,可能需要特定版本,执行以下命令安装(具体版本号需参照官方文档或项目需求):

curl -sSL https://storage.googleapis.com/tensorflow-serving/releases/latest/download/tf_serving_x86_64.deb | sudo dpkg -i -

若遇到依赖性问题,使用apt-get install -f修复。

克隆项目代码:

在本地创建一个目录来存放项目,并从GitHub克隆项目:

git clone https://github.com/rockyzhengwu/nsfw.git
cd nsfw

安装项目依赖

运行以下命令来安装项目所需的Python依赖:

pip install -r requirements.txt

配置并启动TensorFlow Serving

  1. 将训练好的模型转换为TensorFlow Serving可用的格式,如果项目未提供直接可使用的模型,则需要先按照项目的指示训练模型。

    若已有模型文件,跳过训练步骤,直接找到或转换模型到正确的格式。

  2. 使用提供的脚本启动TensorFlow Serving服务:

    ./start_tensorflow_serving.sh
    

    确保模型路径正确无误。

测试示例

在线预测测试:
  1. 将要测试的图片放置在指定路径(如 /tmp/test/test.jpeg)。
  2. 执行预测脚本来获取分类结果:
    python nsfw_predict.py /tmp/test/test.jpeg
    
    此命令会输出图片的分类及其概率。
调用服务端API测试(如果已设置):

可以通过编写简单的客户端脚本来调用TensorFlow Serving API,使用项目内提供的 serving_client.py 示例。

至此,您已成功设置了NSFW图像分类器,可以开始使用它进行图像分类了。记住,合理使用此类技术,遵守相关法律法规和道德规范。

nsfw nsfw 项目地址: https://gitcode.com/gh_mirrors/nsf/nsfw

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋燕荷Fiery

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值