mRMR:高效自动特征选择工具
mrmr 项目地址: https://gitcode.com/gh_mirrors/mr/mrmr
1、项目的基础介绍和主要的编程语言
mRMR(minimum-Redundancy-Maximum-Relevance)是一个用于大规模自动特征选择的Python开源项目。该项目由smazzanti开发,旨在通过最小冗余和最大相关性原则,帮助机器学习工程师和数据科学家快速筛选出最相关的特征,从而提高模型的性能和解释性。
2、项目的核心功能
mRMR的核心功能是通过最小冗余和最大相关性算法,自动选择出对目标变量最具预测能力的特征子集。该算法特别适用于需要频繁进行特征选择且时间有限的实际机器学习应用场景。mRMR支持多种数据处理工具,包括Pandas、Polars、Spark和Google BigQuery,使得用户可以根据自己的需求和数据环境选择合适的工具进行特征选择。
3、项目最近更新的功能包含哪些?
截至最新更新,mRMR项目增加了对Polars和Google BigQuery的支持。Polars是一个高性能的DataFrame库,而Google BigQuery是一个强大的云数据仓库。这些新增的支持使得mRMR在处理大规模数据时更加高效和灵活。此外,项目还修复了一些已知问题,并优化了算法的性能,进一步提升了特征选择的准确性和速度。