PyEMD 技术文档
安装指南
PyEMD 是一个用Python实现的经验模态分解(Empirical Mode Decomposition, EMD)库,支持多种变体如 Ensemble EMD(EEMD)、完全ensemble EMD(CEEMDAN)等。
通过PyPi安装(推荐)
对于大多数用户,推荐使用 pip
安装最新稳定版本:
pip install EMD-signal
从源码安装
若需要最新版本或者对项目进行贡献,则应从GitHub获取源码:
首先,克隆仓库到本地:
git clone https://github.com/laszukdawid/PyEMD
然后进入项目目录并安装:
cd PyEMD
python3 -m pip install .
或者直接通过 pip
使用 Git 链接安装最新代码:
pip install git+https://github.com/laszukdawid/PyEMD.git
虚拟环境建议:为了管理不同的项目依赖,强烈建议在安装前创建一个Python虚拟环境。
项目的使用说明
PyEMD提供了直观的接口来执行经验模态分解及其变种。
快速入门
以基本的 EMD 为例:
from PyEMD import EMD
import numpy as np
# 创建一个随机信号
s = np.random.random(100)
# 初始化EMD对象
emd = EMD()
# 进行EMD分解
IMFs = emd(s)
EEMD 和 CEEMDAN 示例
由于EEMD和CEEMDAN可能涉及大量计算,运行时最好包含在 if __name__ == "__main__":
条件语句中:
from PyEMD import EEMD, CEEMDAN
# 使用EEMD
s = np.random.random(100)
eemd = EEMD()
eIMFs = eemd(s)
# 使用CEEMDAN
ceemdan = CEEMDAN()
cIMFs = ceemdan(s)
可视化示例
PyEMD提供了可视化辅助工具:
import numpy as np
from PyEMD import EMD, Visualisation
t = np.linspace(0, 3, 300)
S = np.sin(13*t + 0.2*t**1.4) - np.cos(3*t)
emd = EMD()
imd, res = emd.emd(S)
vis = Visualisation()
vis.plot_imfs(imfs=imd, residue=res, t=t)
vis.show()
项目API使用文档
API的具体详情包括每种方法的参数和返回值,可在官方文档中找到。例如,EMD
类的主要方法emd(signal)
用于分解原始信号,返回的是IMFs列表以及残留项。
总结
PyEMD是一个强大的Python库,适用于时间序列分析中的非线性、非平稳信号处理。它提供了丰富的选项来定制分解过程,且附带实验性的功能如JitEMD和2D EMD。正确的安装与调用这些API将使用户能够高效地进行信号的分解分析。
注意
使用实验性功能(如EMD2D/BEMD)时,请注意其可能会有未经充分验证的结果,确保适合您的应用场景。
最后,如果您在使用过程中有任何疑问,或希望提供反馈和改进意见,请参考文档中的联系方式与作者联系。