Real-ESRGAN图像超分模型安装与使用教程
简介
Real-ESRGAN是一个基于深度学习的图像超分辨率重建模型,能够显著提高图像的分辨率和清晰度。本教程详细介绍了Real-ESRGAN的安装和使用方法,适用于Python开发者和对图像处理感兴趣的用户。
安装步骤
1. 环境准备
- Python >= 3.7 (推荐使用Anaconda或Miniconda)
- PyTorch >= 1.7
2. 项目安装
-
克隆项目仓库:
git clone https://github.com/xinntao/Real-ESRGAN.git cd Real-ESRGAN
-
安装依赖库:
pip install basicsr pip install facexlib pip install gfpgan pip install -r requirements.txt python setup.py develop
3. 模型下载
下载预训练模型并将其放置在项目文件夹的weights
目录中。
使用方法
1. 图片超分
运行以下命令进行图片超分:
python inference_realesrgan.py -i inputs -o results
2. 视频超分
运行以下命令进行视频超分:
python inference_realesrgan_video.py -i inputs -o results
参数说明
-i
或--input
:输入图像或文件夹路径。-o
或--output
:输出文件夹路径。-n
或--model_name
:指定使用的模型名称。-s
或--outscale
:指定最终的放大倍数。-t
或--tile
:指定瓦片大小,0表示无瓦片。--face_enhance
:使用GFPGAN增强人脸。
示例
假设你有一个名为input.jpg
的图片,想要将其分辨率提高4倍,可以使用以下命令:
python inference_realesrgan.py -i input.jpg -o output -s 4
注意事项
- 如果遇到CUDA内存不足的问题,可以尝试减小
--tile
的值。 - 使用
--face_enhance
参数可以增强人脸细节,但会增加计算时间。
参考
本教程基于Real-ESRGAN项目,更多详细信息请参考项目官方文档。