基于出行住宿评论数据的情感分析研究(民宿篇,含Python代码)

基于出行住宿评论数据的情感分析研究(民宿篇,含Python代码)

【下载地址】基于出行住宿评论数据的情感分析研究民宿篇含Python代码分享 本项目基于爱彼迎民宿评论数据,进行情感分析研究。通过对用户评论的情感分析,获取民宿与酒店带给用户体验的异同点,从而更好地分析出民宿与酒店各自的优势和劣势所在。项目包含Python代码,可用于数据预处理、情感分析和模型预测 【下载地址】基于出行住宿评论数据的情感分析研究民宿篇含Python代码分享 项目地址: https://gitcode.com/Resource-Bundle-Collection/1aa4b

项目简介

本项目基于爱彼迎民宿评论数据,进行情感分析研究。通过对用户评论的情感分析,获取民宿与酒店带给用户体验的异同点,从而更好地分析出民宿与酒店各自的优势和劣势所在。项目包含Python代码,可用于数据预处理、情感分析和模型预测。

数据集介绍

数据集来源于和鲸社区的爱彼迎评论数据集,包含北京、上海、重庆、成都、广州、杭州、南京、苏州、西安共9个地区的评论数据。每个地区的评论数据以txt文本的格式存储。

数据预处理

  1. 引入库:导入必要的Python库,如os、jieba、re、pandas、numpy等。
  2. 合并生成总数据:将9个地区的txt文件合并为总数据。
  3. 剔除无价值数据:去除英文数据、重复词、短评论等无价值数据。

数据分析

  1. 分词并用SnowNLP进行初步分析:使用SnowNLP对每条评论进行情感评分。
  2. 词性标注:对评论数据进行分词操作,并添加词性标注。
  3. 情感数据分析和预测:使用LinearSVC模型进行情感预测,并通过优化处理提高模型准确率。

模型优化

  1. 向下采样:由于负向情感的评价太少,进行了下采样以提高模型预测的准确性。
  2. 自定义情感倾向分析模型:使用情感分析词汇(正负面评价词语、正负面情绪词、否定词)进行情感分析。

使用方法

  1. 下载数据集:从和鲸社区下载爱彼迎评论数据集。
  2. 运行代码:按照代码中的步骤进行数据预处理、情感分析和模型预测。
  3. 结果分析:根据模型预测结果,分析民宿与酒店的用户体验异同点。

注意事项

  • 数据集较大,建议在性能较好的设备上运行代码。
  • 代码中包含详细的注释,方便理解和修改。
  • 情感分析结果仅供参考,实际应用中需结合其他因素进行综合分析。

贡献

欢迎对本项目进行改进和扩展,提交Pull Request或Issue。

许可证

本项目遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

【下载地址】基于出行住宿评论数据的情感分析研究民宿篇含Python代码分享 本项目基于爱彼迎民宿评论数据,进行情感分析研究。通过对用户评论的情感分析,获取民宿与酒店带给用户体验的异同点,从而更好地分析出民宿与酒店各自的优势和劣势所在。项目包含Python代码,可用于数据预处理、情感分析和模型预测 【下载地址】基于出行住宿评论数据的情感分析研究民宿篇含Python代码分享 项目地址: https://gitcode.com/Resource-Bundle-Collection/1aa4b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

班秋茉Norine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值