全新中国交通标志检测数据集2021—CCTSDB 2021
简介
CCTSDB 2021是一个全新的中国交通标志检测数据集,旨在为交通标志检测研究提供一个更全面、更复杂的基准。该数据集在CCTSDB 2017的基础上进行了扩展,增加了4000多幅真实交通场景图像和详细的注释,并替换了许多原始的易检测图像为困难样本,以适应复杂多变的检测环境。
数据集特点
- 样本数量增加:新增4000多幅真实交通场景图像,使数据集更加丰富和多样化。
- 困难样本替换:替换了许多原始的易检测图像为困难样本,提高了检测网络的鲁棒性。
- 多维度分类:创建了新的专用测试集,并根据类别含义、符号大小和天气条件进行分类。
- 多算法测评:在新的基准上对九种经典的交通标志检测算法进行了综合评价,帮助确定算法未来的研究方向。
数据集结构
- 训练集:包含16356张图像,编号为00000-18991。
- 阳性样本测试集:包含1500张图像,编号为18992-20491。
- 负片样本:包含500张负片样本图像。
文件说明
- XML压缩包:存储训练集和阳性样本测试集的XML格式注释文件。
- train_img压缩包:存储训练集图像。
- train_labels压缩包:存储训练集的TXT格式注释文件。
- test_img压缩包:存储阳性样本测试集图像。
- 基于天气和环境的分类压缩包:存储根据天气和照明条件分类的阳性样本测试集的XML格式注释文件。
- 基于交通标志大小分类压缩包:存储根据图像中交通标志大小分类的阳性样本测试集的XML格式注释文件。
使用说明
- 下载数据集:请从提供的下载链接中获取数据集文件。
- 解压缩文件:解压缩下载的文件,获取训练集、测试集和相关注释文件。
- 使用数据集:根据需要使用数据集进行交通标志检测算法的训练和测试。
引用
使用该数据集时,请引用以下论文:
- Jianming Zhang, Xin Zou, Li-Dan Kuang, Jin Wang, R. Simon Sherratt, Xiaofeng Yu, CCTSDB 2021: A more comprehensive traffic sign detection benchmark, Human-centric Computing and Information Sciences, 2022, vol. 12, Article number: 23, DOI: 10.22967/HCIS.2022.12.023.
致谢
感谢长沙理工大学的相关学者及团队制作并发布该数据集,为交通标志检测研究提供了宝贵的资源。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考