自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 目标检测数据集图片及标签同步对比度/亮度增强

对比度和亮度增强是常见的数据增强方法,它们可以使图像在不同光照和对比度条件下表现得更加自然,帮助模型学习在多样化的视觉环境中提取有效特征。然而,仅增强图像是不够的,因为标签也需要与图像同步调整。代码如下,其中alpha参数修改为对比度调整,alpha 的值为 1.0 时表示不变,大于 1.0 增强对比度,小于 1.0 减弱对比度,一般调整0.5-2.0;beta参数修改为亮度调整,beta 为 0 时表示亮度不变,正值增加亮度,负值降低亮度,一般调整负100-正100,可以根据效果自行调整数值。

2024-11-03 10:06:05 231

原创 超详细目标检测:YOLOv11(ultralytics)训练自己的数据集,新手小白也能学会训练模型,手把手教学一看就会

训练自己的数据集分为4部分,先配置环境,再获取制作自己的数据集,然后修改配置训练,最后验证训练结果,附带可视化界面。YOLOv11为Ultralytics公司YOLO系列实时目标检测器的最新迭代版本,训练流程与YOLOv8基本一致,仅替换了新的网络结构与预训练权重,如果有其他目标检测的数据集可以直接拿来用,从第3训练模型开始看,新手小白0基础建议一步一步跟着来,哪里看不懂的或者遇到哪有问题可以发到评论区交流~

2024-10-31 16:57:49 1125 8

原创 统计数据集的TXT、XML及JSON标注文件中各类别/每个标签的数量

在计算机视觉和深度学习领域,标注文件是模型训练的重要组成部分。无论是图像分类、目标检测还是图像分割,正确的标注能够显著提升模型的性能。在实际应用中,我们需要快速了解每个类别的样本数量,以便进行数据分析、平衡类别分布或优化模型训练。以下是各个格式的文件代码,输出均按照顺利从多到少排序,其中txt输入需要修改列表中标签。统计YOLO格式的TXT文件。统计VOC格式的XML文件。

2024-10-30 16:19:48 572

原创 大规模数据集优化:随机对应删除文件,针对数据集过大

有些时候我们拿到了庞大的数据集,而并不需要用到那么多数据集进行训练,为了提高模型的效率和准确性,需要对数据集进行优化,随机删除部分不必要的文件,可以有效减小数据集规模,同时保留我们需要的信息。这里默认图片文件后缀为jpg,标注文件后缀为xml,如果遇到文件后缀名为大写的,则需要先将大写调整为小写,再进行查找,使用以下代码进行后缀名大小改小写。本文代码即是针对数据进行随机对应删除操作,即给定文件名中包含的字符及删除百分比,运行代码后可以自动删除同名的图片及标注数据,十分方便,

2024-10-30 15:48:52 158

原创 目标检测:YOLOv11(Ultralytics)环境配置,适合0基础纯小白,超详细

YOLO11是Ultralytics公司YOLO系列实时目标检测器的最新迭代版本,它以尖端的准确性、速度和效率重新定义了可能实现的性能。在之前YOLO版本取得的显著进步基础上,YOLO11在架构和训练方法上进行了重大改进,使其成为各种计算机视觉任务中的通用选择。除了传统的目标检测外,YOLO11 还支持目标跟踪、实例分割、姿态估计、OBB定向物体检测(旋转目标检测)等视觉任务。如果已经会配置YOLOv8的环境,本文不需要重复配置,下载最新的YOLOv11训练文件即可。

2024-10-27 21:36:42 2179 14

原创 Labelme标注的json文件转yolo训练的txt文件

在目标检测任务中,数据标注是模型训练的关键环节。常用的标注工具有Labelimg和 Labelme,它们均能够以直观的方式对图像中的目标进行标注,并生成包含标注信息的TXT文件或者 JSON 文件。然而,YOLO模型使用的是特定格式的 .txt 文件作为训练数据。思路为,json文件中需要提取的关键信息为类别和坐标,可在shapes标签中通过提取label和points的值并进行分析得到,再将坐标值进行归一化,将全部信息按照每行文本输出到txt文件中,得到的即为yolo格式的txt文件。

2024-10-24 13:42:57 402

原创 计算机毕设:基于xx的xxxx检测系统 解析(第一个xx可以是深度学习、yolov8等算法名称,第二个xxxx一般是不同数据集的区别)

随着人工智能和计算机视觉技术的迅速发展,目标检测已经成为众多应用场景中的核心任务之一。无论是在自动驾驶、智能安防、农业生产还是工业检测中,目标检测技术都扮演着至关重要的角色。在实际开发中,构建一个基于深度学习的目标检测系统,选择合适的算法及数据集尤为重要。本文将站在新人小白的视角,从题目分析、算法选择、数据集获取、训练模型、系统五个角度分析。

2024-10-22 22:02:30 801

原创 目标检测数据集图片及标签同步旋转

在目标检测任务中,图像的旋转是一种常见且有效的增强策略。通过对图像进行旋转,能够增加数据集的多样性,帮助模型更好地应对不同角度下的目标。然而,在进行图像旋转时,如果不对标签(标注框)进行同步调整,旋转后的图像将与标签信息不匹配,导致训练数据需要再次标注,提高了任务量。本篇文章将介绍如何在对目标检测数据集的图片进行旋转的同时,确保标签的同步旋转。通过这一增强手段,不仅可以扩展数据集的多样性,还能保证旋转后的图像与标签信息的精确对应,提升目标检测模型的鲁棒性和性能。

2024-10-21 23:56:18 171

原创 目标检测数据集图片及标签同步锐化

在目标检测任务中,数据集的质量直接影响到模型的性能。锐化(Sharpening)技术是常见的图像增强方法之一,能够突出图像中的细节特征,使模型在处理边缘、纹理等细节时表现更好。然而,单纯对图像进行锐化处理并不充分,特别是在目标检测任务中,图像的锐化还需与标签(标注框)的同步处理相结合,以保证增强后的图像与其对应的标注信息保持一致性。本篇文章将介绍如何对目标检测数据集中的图片进行锐化处理,并同步调整相应的标签文件,确保在数据增强的同时,图像与标签信息的精确对应。

2024-10-18 22:25:25 235

原创 目标检测数据集图片及标签同步裁剪

在目标检测任务中,模型的训练依赖于大量高质量的标注数据。然而,获取足够多的标注数据集往往代价高昂,并且某些情况下,数据集中的样本分布不均衡,这会导致模型的泛化能力不足。为此,数据增强成为提升模型性能的常用方法之一。在数据增强的各种方法中,裁剪是一种高效且常用的技术。通过对图片进行随机或特定区域的裁剪,能够生成更多的训练样本,提高模型对不同尺度和位置目标的鲁棒性。此外,裁剪还可以有效解决原始图片尺寸过大的问题,避免对训练性能造成影响。大尺寸图片会增加模型的计算开销,导致训练速度变慢、内存消耗增大。

2024-10-16 23:25:48 1065

原创 yolov8等目标检测数据集YOLO格式转VOC格式,txt文件转xml文件,格式转换

YOLO格式的标注文件是归一化之后的数据,每一行有5个数值,从左到右分别是类别,中心坐标x,中心坐标y,宽度w,高度h,这些数据经过计算后即可得到xmin,ymin,xmax,ymax的值,将这些信息相应的填入xml文件中即可。还有一个关键部分是xml文件的构建,如下代码构建,变量确认后替换。

2024-10-14 13:46:18 444

原创 yolov8(Ultralytics)可视化界面ui设计,基于pyqt5,单py文件即插即用

yolov8可视化界面、ui界面、ultralytics可视化界面,即插即用,简单便捷

2024-10-10 22:00:50 1793 3

原创 目标检测:yolov9训练自己的数据集,新手小白也能学会训练模型,一看就会

训练自己的数据集分为4部分,先配置环境,再获取制作自己的数据集,然后修改配置训练,最后验证训练结果。新手小白0基础建议一步一步跟着来,哪里看不懂的或者遇到哪有问题可以评论区交流~

2024-10-10 15:44:45 1415

原创 VOC格式转YOLO格式,xml文件转txt文件简单通用代码

很多人在进行目标检测训练时习惯将得到的数据标注为XML文件的VOC格式,或者在网上获取的数据集被标注为XML文件,但是不同的标注工具进行的标注会产生不同的标注xml文件,这里我写了一种通用的针对含有最基本图片和标注坐标信息的xml进行转换,在这里简单介绍并分享出来xml文件中最基本需要含有的信息为size,object下的name和bndbox,具体示例如下图(如果xml文件中没有size也就是图片的宽和高则需要单独对每个图片进行读取,感兴趣可以私聊,这里不展开介绍)

2024-06-26 22:59:46 544

原创 深度学习目标检测:yolov9环境配置,适合0基础小白,超详细

点击鼠标右键yolov9文件夹通过pycharm打开,打开后需要配置虚拟环境,点击file-settings,点击project:yolov9-main,点击python interpreter,点击右边add....,下载完之后运行安装,建议安装到默认路径,所以C盘需要留有20G以上的存储空间,一直点击下一步,直到出现这个界面,不要点击精简,选择自定义,然后全部勾选再一直下一步即可。下载完之后安装,一直点下一步,遇到选择路径 修改路径到D盘或者其它除C盘,再遇到勾选的选项全部勾选就可以。

2024-06-19 23:16:17 2741 5

原创 目标检测:yolov7训练自己的数据集,新手小白也能学会训练模型,一看就会

训练自己的数据集分为4部分,先配置环境,再获取制作自己的数据集,然后修改配置训练,最后验证训练结果,可选择将结果进行可视化界面展示。yolov7训练起来较为简单,跟yolov5相差不多,只需要多加一步将数据集所有的图片导入文本之中。如果有其他目标检测的数据集理论上可以直接拿来用,从第3训练模型开始看,新手小白0基础建议一步一步跟着来,哪里看不懂的或者遇到哪有问题可以评论区交流或者私信问~

2024-05-29 17:36:32 3207 6

原创 深度学习目标检测:yolov7环境配置,适合0基础小白,超详细

点击鼠标右键yolov7文件夹通过pycharm打开,打开后需要配置虚拟环境,点击file-settings,点击project:yolov7-main,点击python interpreter,点击右边add....,下载完之后运行安装,建议安装到默认路径,所以C盘需要留有20G以上的存储空间,一直点击下一步,直到出现这个界面,不要点击精简,选择自定义,然后全部勾选再一直下一步即可。下载完之后安装,一直点下一步,遇到选择路径 修改路径到D盘或者其它除C盘,再遇到勾选的选项全部勾选就可以。

2024-05-28 12:11:12 4227 6

原创 目标检测:yolov5训练自己的数据集,新手小白也能学会训练模型,一看就会

训练自己的数据集分为4部分,先配置环境,再获取制作自己的数据集,然后修改配置训练,最后验证训练结果,可选择将结果进行可视化界面展示。yolov5训练起来较为简单,跟yolov8相差不多,如果有其他目标检测的数据集理论上可以直接拿来用,从第3训练模型开始看,新手小白0基础建议一步一步跟着来,哪里看不懂的或者遇到哪有问题可以评论区交流或者私信问~

2024-04-27 00:01:55 5108 17

原创 深度学习目标检测:yolov5环境配置,适合0基础小白,超详细

对于小白也很简单的yolov5环境配置

2024-04-26 23:14:09 8400 25

原创 统计标注文件xml文件类别

在进行目标检测训练时,有时候下载的或者别人给的数据集只有图片和voc格式的标注信息,没有类别,转换yolo格式进行目标检测训练时就非常被动,这里给出一个python代码参考,可以统计xml文件所有的类别及总类别数,yolov5、yolov7、yolov8通用,效果如下图。核心代码为找到object下的name,提取文本。

2024-04-25 19:25:20 401 1

原创 深度学习数据集分割json文件转目标检测txt文件

平时在网上找数据集或者师兄师姐给到的数据集有部分是做分割的数据集,标注是以多边形框的形式进行标注的,而我们现在常用的目标检测所使用的数据集一般是按照矩形框进行标注的,这里给出一种json转txt的方法(需要json转png+txt私聊),整体思路大概是获取多边形标注框的所有坐标点的最大最小坐标,达到框选整个目标的需求。效果如可以看下图,所有的类别和标注框都正常,右图为json标注效果,左图为转换后txt效果。

2024-04-23 14:15:03 974

原创 论文参考文献作者排序

做科研时部分论文或者专著引用的参考文献需要将中文文献和英文文献作者分开按照字母顺序排序,一个一个手动排的话速度很慢而且效率很低,这里给到一种方法,通过调用python的pinyin库来达到自动排序的效果。针对中文文献和英文文献作者分别进行排序。最后再将二者合并起来保存即可。效果如下,这里只展示部分。首先安装pinyin库。

2024-04-22 17:23:14 508

原创 目标检测:yolov8(ultralytics)训练自己的数据集,新手小白也能学会训练模型,一看就会

先配置环境,再获取制作自己的数据集,然后修改配置训练,最后验证训练结果,附带可视化界面。yolov8训练起来较为简单,如果有其他目标检测的数据集理论上可以直接拿来用,从第3训练模型开始看,新手小白0基础建议一步一步跟着来,哪里看不懂的或者遇到哪有问题可以评论区交流或者私信问~

2024-04-09 20:47:09 10795 21

原创 深度学习目标检测:yolov8(Ultralytics)环境配置,适合0基础小白,超详细

深度学习目标检测yolov8小白教程环境搭建,超级简单的教程,纯新手方便理解,一看就会。

2024-04-08 20:07:12 15301 72

原创 yolov8可视化界面,基于pyqt5,兼容官方源码,可打包成软件

一段简单的基于pyqt5的yolov8可视化界面,完全兼容官方源码,没对官方代码做任何修改,可打包成软件

2024-04-08 18:20:26 2705 25

yolov11源码+yolov11n、s、m.pt文件整合8.3.20版本

ultralytics yolov11 8.3.20版本,源码+yolov11n、s、m.pt文件整合,适合外网访问不了的使用

2024-10-27

yolov8源码+yolov8n、s、m.pt文件整合8.2.0版本

yolov8 8.2.0版本,源码+yolov8n、s、m.pt文件整合,适合外网访问不了的使用

2024-09-27

yolov9源码+yolov9-t-converted.pt、yolov9-s-converted.pt文件整合

yolov9源码+yolov9-t-converted.pt、yolov9-s-converted.pt文件整合,适合打不开外网的人下载使用

2024-06-19

yolov7源码+yolov7-tiny.pt、yolov7.pt文件整合

yolov7源码+yolov7-tiny.pt、yolov7.pt文件整合,适合打不开外网的人下载使用

2024-05-28

yolov5源码+yolov5n.pt、yolov5s.pt文件整合

yolov5源码+yolov5n.pt、yolov5s.pt文件整合,适合外网访问不了的使用

2024-04-26

yolov8源码+yolov8n、s.pt文件整合

yolov8源码+yolov8n、s.pt文件整合,适合外网访问不了的使用

2024-04-24

python爬虫实战之澎湃新闻关键词爬取内容

内容概要:通过selenium库控制浏览器获取包含关键词的所有新闻,再进入对应网址获取全部内容 需要一定python基础,适合自然语言数据分析相关项目获取数据使用

2024-04-24

深度学习目标检测佩戴安全帽检测数据集,适用于yolov5,yolov7,yolov8等目标检测算法训练,jpg+xml文件

内容介绍:深度学习目标检测佩戴安全帽检测数据集,适用于yolov5,yolov7,yolov8等目标检测算法训练,分为hat和person两个类别,其中hat是佩戴安全帽的图片,person是未佩戴安全帽的类别,下载这个数据集可以完成检测工人是否佩戴安全帽进行安全作业的项目研究。 适合人群:正在进行毕业设计或者写论文的人群,拿着安全帽项目练手的人群。 能够得到完整的大量的安全帽检测数据集,共有7466张图和对应的标注文件,不需要再手动搜索下载数据集,方便快捷获取数据并开始自己的研究。 使用建议:在labelimg上打开查看标注细节,或者直接转为txt文件后在yolov8等目标检测算法上训练即可,简单方便使用。

2024-04-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除