Stanford Cars数据集的下载与使用

Stanford Cars数据集的下载与使用

StanfordCars数据集的下载与使用 StanfordCars数据集的下载与使用 项目地址: https://gitcode.com/Resource-Bundle-Collection/c00e1

简介

Stanford Cars数据集是一个用于细粒度分类任务的数据集,包含16185张不同型号的汽车图片。其中,8144张为训练集,8041张为测试集。该数据集主要用于区分不同品牌、型号和年份的汽车。

数据集内容

  • 图片数量: 16185张
  • 训练集: 8144张
  • 测试集: 8041张
  • 类别数量: 196类

下载方式

数据集可以通过以下方式下载:

  1. 官网下载: 访问Stanford Cars数据集的官方网站进行下载。
  2. 百度网盘下载: 如果官网链接失效,可以通过百度网盘下载,提取码为6666。

数据集结构

数据集包含两个主要文件:

  1. 图片文件夹: 包含所有16185张汽车图片。
  2. 标注文件: 以MATLAB格式保存的标注文件,包含图片的类别、边界框等信息。

使用方法

1. 提取类别名

使用Python脚本提取类别名,并保存为文本文件。

import scipy.io

data = scipy.io.loadmat('cars_annos.mat')
class_names = data['class_names']

with open('label_map.txt', 'w') as f_class:
    for j in range(class_names.shape[1]):
        class_name = str(class_names[0, j][0]).replace(' ', '_')
        f_class.write(f"{j+1} {class_name}\n")

2. 提取图片信息

提取图片的序号、文件名、类别和是否属于测试集的信息。

import scipy.io

data = scipy.io.loadmat('cars_annos.mat')
annotations = data['annotations']

with open('mat2txt.txt', 'w') as f_train:
    for i in range(annotations.shape[1]):
        name = str(annotations[0, i][0])[2:-2]
        test = int(annotations[0, i][6])
        clas = int(annotations[0, i][5])
        f_train.write(f"{i+1} {name} {clas} {test}\n")

注意事项

  • 在提取类别名时,如果类别名中包含斜杠(/),建议将其替换为下划线(_),以避免读取文件时出错。
  • 数据集大小约为2GB,建议在Linux系统下使用axel多线程下载工具进行下载,以提高下载速度并支持断点续传。

参考资料

该数据集的使用方法和详细介绍可以参考CSDN博客文章《Stanford Cars数据集的下载与使用》。

StanfordCars数据集的下载与使用 StanfordCars数据集的下载与使用 项目地址: https://gitcode.com/Resource-Bundle-Collection/c00e1

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

纪想娇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值