GB/T 33577-2017 智能运输系统 车辆前向碰撞预警系统 性能要求和测试规程

GB/T 33577-2017 智能运输系统 车辆前向碰撞预警系统 性能要求和测试规程

【下载地址】GBT33577-2017智能运输系统车辆前向碰撞预警系统性能要求和测试规程分享 GB/T 33577-2017 智能运输系统 车辆前向碰撞预警系统 性能要求和测试规程 【下载地址】GBT33577-2017智能运输系统车辆前向碰撞预警系统性能要求和测试规程分享 项目地址: https://gitcode.com/Open-source-documentation-tutorial/732ea

标准简介

本资源提供的是《GB/T 33577-2017 智能运输系统 车辆前向碰撞预警系统 性能要求和测试规程》的PDF文档。该标准由中国标准化机构制定发布,旨在规范智能运输系统中车辆前向碰撞预警系统的性能指标及测试方法,对提升道路安全、促进智能驾驶技术健康发展具有重要意义。

内容概览

这份国家标准详细规定了车辆前向碰撞预警系统(Forward Collision Warning System, FCWS)的设计、开发、测试过程中应遵循的一系列性能要求。它包括但不限于:

  • 系统功能定义:明确了FCWS的基本功能,如何在潜在前向碰撞情况下提醒驾驶员。
  • 性能指标:规定了预警时间、检测精度、误报率和漏报率等关键性能参数。
  • 测试环境与条件:设定进行系统性能测试的具体环境参数和模拟场景。
  • 测试方法:详细介绍了评估FCWS性能的各项测试程序,确保系统的可靠性与一致性。

应用领域

该标准适用于汽车制造商、智能交通技术研发企业、以及相关零部件供应商,是设计、验证和认证车辆前向碰撞预警系统的重要依据。对于从事智能驾驶技术研究、产品开发、安全管理的专业人士而言,此文档是不可或缺的参考资料。

注意事项

  • 请确保下载后的文件用于合法的教学、科研或个人学习目的。
  • 标准可能会随技术进步和政策更新而修订,使用时请注意查阅最新版本。
  • 本资源为非官方分享,正式应用中建议参考官方发布的最新版标准文档。

通过本资源的学习和应用,可以深入了解并掌握当前中国汽车行业在智能驾驶辅助系统领域的技术标准,为推动智能交通系统的发展贡献力量。

【下载地址】GBT33577-2017智能运输系统车辆前向碰撞预警系统性能要求和测试规程分享 GB/T 33577-2017 智能运输系统 车辆前向碰撞预警系统 性能要求和测试规程 【下载地址】GBT33577-2017智能运输系统车辆前向碰撞预警系统性能要求和测试规程分享 项目地址: https://gitcode.com/Open-source-documentation-tutorial/732ea

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蒙兵颂Keene

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值