薄膜光学与镀膜技术 高清版PDF

薄膜光学与镀膜技术 高清版PDF

【下载地址】薄膜光学与镀膜技术高清版PDF分享 薄膜光学与镀膜技术 高清版PDF 【下载地址】薄膜光学与镀膜技术高清版PDF分享 项目地址: https://gitcode.com/Open-source-documentation-tutorial/c516c

资源介绍

本仓库提供《薄膜光学与镀膜技术》高清版PDF文件的下载。该资源为李正中版,是光学镀膜领域的权威书籍,内容详实,适合从事光学镀膜研究、设计及应用的专业人士阅读。

资源特点

  • 高清版PDF:文件清晰度高,便于阅读和打印。
  • 权威书籍:李正中版,内容权威,涵盖薄膜光学与镀膜技术的核心知识。
  • 适用人群:适合光学工程师、研究人员、学生及对光学镀膜感兴趣的读者。

使用说明

  1. 下载本仓库中的PDF文件。
  2. 使用PDF阅读器打开文件,开始阅读。
  3. 如需打印,建议使用高质量打印机以保证打印效果。

注意事项

  • 请尊重版权,仅限个人学习和研究使用。
  • 如需商业用途,请购买正版书籍。

希望本资源能够帮助您在薄膜光学与镀膜技术领域取得更多进展!

【下载地址】薄膜光学与镀膜技术高清版PDF分享 薄膜光学与镀膜技术 高清版PDF 【下载地址】薄膜光学与镀膜技术高清版PDF分享 项目地址: https://gitcode.com/Open-source-documentation-tutorial/c516c

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样性。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确性和稳定性 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吉德烽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值