可视化群论探索 —— Visual Group Theory

可视化群论探索 —— Visual Group Theory

【下载地址】可视化群论探索VisualGroupTheory 可视化群论探索 —— Visual Group Theory如果您对以轻松直观的方式学习群论感兴趣,那么这本书正是为您准备的 【下载地址】可视化群论探索VisualGroupTheory 项目地址: https://gitcode.com/Open-source-documentation-tutorial/a7a52

如果您对以轻松直观的方式学习群论感兴趣,那么这本书正是为您准备的。《Visual Group Theory》是一本独特而深入的教材,它不仅覆盖了群论的基本概念,而且通过视觉化的手段,使这个数学领域中通常认为抽象难懂的主题变得易于理解。本书适合初学者到进阶学习者,无论是数学专业的学生还是对数学理论有好奇心的自学者,都能从中找到独特的洞见和启发。

群论作为现代数学的基石之一,研究的是代数结构中的对称性。《Visual Group Theory》采用创新的教学方法,通过图形、图表和实例,将这些复杂的对称性概念生动地展示出来,帮助读者构建直觉理解。作者巧妙地平衡了直观解释与严格定义,让读者在享受视觉盛宴的同时,逐步深入这一深奥的数学分支。

从基本的群定义出发,经过对各种典型群的探索,到群的性质和操作,本书引导你一步步解开对称性的秘密,揭示自然界和数学世界中的隐藏模式。通过本书的学习,你将会发现,原本看似遥不可及的群论知识,其实就在生活和科学的各个角落。

请注意,此资源为英文版本,适合希望直接接触原版资料,深化理解和提高英语阅读能力的学习者。加入这场视觉与思维的双重旅程,开启你的群论探索之旅吧!


这个资源是学习数学,尤其是群论领域的一扇窗口,利用它,你可以以一种前所未有的方式,感受数学之美与逻辑的力量。

【下载地址】可视化群论探索VisualGroupTheory 可视化群论探索 —— Visual Group Theory如果您对以轻松直观的方式学习群论感兴趣,那么这本书正是为您准备的 【下载地址】可视化群论探索VisualGroupTheory 项目地址: https://gitcode.com/Open-source-documentation-tutorial/a7a52

The editors of this book, an accomplished senior data scientist and systems engineer, Thomas Anthony, and an academic leader, Dr. Sang Suh, with broad expertise from artificial intelligence to data analytics, constitute a perfect team to achieve the goal of compiling a book on Big Data and Visual Analytics. For most uninitiated professionals “Big Data” is nothing but a buzzword or a new fad. For the people in the trenches, such as Sang and Thomas, Big Data and associated analytics is a matter of serious business. I am honored to have been given the opportunity to review their compiled volume and write a foreword to it. After reviewing the chapters, I realized that they have developed a comprehensive book for data scientists and students by taking into account both theoretical and practical aspects of this critical and growing area of interest. The presentations are broad and deep as the need arise. In addition to covering all critical processes involving data science, they have uniquely provided very practical visual analytics applications so that the reader learns from the perspective executed as an engineer- ing discipline. This style of presentation is a unique contribution to this new and growing area and places this book at the top of the list of comparable books. The chapters covered are 1. Automated Detection of Central Retinal Vein Occlu- sion Using Convolutional Neural Network, by “Bismita Choudhury, Patrick H. H. Then, and Valliappan Raman”; 2. Swarm Intelligence Applied to Big Data Analytics for Rescue Operations with RASEN Sensor Networks, by “U. John Tanik, Yuehua Wang, and Serkan G. ldal”; 3. Gender Classification Based on Deep Learning, by “Dhiraj Gharana, Sang Suh, and Mingon Kang”; 4. Social and Organizational Culture in Korea and Women’s Career Development, by “Choonhee Yang and Yongman Kwon”; 5. Big Data Framework for Agile Business (BDFAB) as a Basis for Developing Holistic Strategies in Big Data Adoption, by “Bhuvan Unhelkar”; 6. Scalable Gene Sequence Analysis on Spark, by “Muthahar Syed, Jinoh Kim, and Taehyun Hwang”; 7. Big Sensor Data Acquisition and Archiving with Compression, by “Dongeun Lee”; 8. Advanced High Performance Computing for Big Data Local Visual Meaning, “Ozgur Aksu”; 9. Transdisciplinary Benefits of Convergence in Big Data Analytics, “U. John Tanik and Darrell Fielder”; 10. A Big Data Analytics Approach in Medical Image Segmentation Using Deep Convolutional v vi Foreword Neural Networks, by “Zheng Zhang, David Odaibo, and Murat M. Tanik”; 11. Big Data in Libraries, by “Robert Olendorf and Yan Wang”; 12. A Framework for Social Network Sentiment Analysis Using Big Data Analytics, by “Bharat Sri Harsha Karpurapu and Leon Jololian”; 13. Big Data Analytics and Visualization: Finance, by “P. Shyam and Larry Mave”; 14. Study of Hardware Trojans in a Closed Loop Control System for an Internet-of-Things Application, by “Ranveer Kumar and Karthikeyan Lingasubramanian”; 15. High Performance/Throughput Computing Workflow for a Neuro-Imaging Application: Provenance and Approaches, by “T. Anthony, J. P. Robinson, J. Marstrander, G. Brook, M. Horton, and F. Skidmore.” The review of the above diverse content convinces me that the promise of the wide application of big data becomes abundantly evident. A comprehensive transdisciplinary approach is also evident from the list of chapters. At this point I have to invoke the roadmap published by the National Academy of Sciences titled “Convergence: Facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering, and Beyond” (ISBN 978-0-309-30151-0). This document and its NSF counterpart states convergence as “an approach to problem solving that cuts across disciplinary boundaries. It integrates knowledge, tools, and ways of thinking from life and health sciences, physical, mathematical, and computational sciences, engineering disciplines, and beyond to form a comprehensive synthetic framework for tackling scientific and societal challenges that exist at the interfaces of multiple fields.” Big data and associated analytics is a twenty-first century area of interest, providing a transdisciplinary framework to the problems that can be addressed with convergence. Interestingly, the Society for Design and Process Science (SDPS), www.sdpsnet. org, which one of the authors has been involved with from the beginning, has been investigating convergence issues since 1995. The founding technical principle of SDPS has been to identify the unique “approach to problem solving that cuts across disciplinary boundaries.” The answer was the observation that the notions of Design and Process cut across all disciplines and they should be studied scientifically in their own merits, while being applied for developing the engineering of artifacts. This book brings the design and process matters to the forefront through the study of data science and, as such, brings an important perspective on convergence. Incidentally, the SDPS 2017 conference was dedicated to “Convergence Solutions.” SDPS is an international, cross-disciplinary, multicultural organization dedicated to transformative research and education through transdisciplinary means. SDPS celebrated its twenty-second year during the SDPS 2017 conference with emphasis on convergence. Civilizations depend on technology and technology comes from knowledge. The integration of knowledge is the key for the twenty-first century problems. Data science in general and Big Data Visual Analytics in particular are part of the answer to our growing problems. This book is a timely addition to serve data science and visual analytics community of students and scientists. We hope that it will be published on time to be distributed during the SDPS 2018 conference. The comprehensive and practical nature of the book, addressing complex twenty-first century engineering problems in a transdisciplinary manner, is something to be celebrated. I am, as one of the Foreword vii founders of SDPS, a military and commercial systems developer, industrial grade software developer, and a teacher, very honored to write this foreword for this important practical book. I am convinced that it will take its rightful place in this growing area of importance.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杜文岱Igor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值