探索空间之美:《几何学教程(立体几何卷)》推荐

探索空间之美:《几何学教程(立体几何卷)》推荐

【下载地址】几何学教程立体几何卷.pdf分享 《几何学教程(立体几何卷)》是一本由著名数学家J. Hadamard编著的经典教材,现以中文PDF形式提供,保证高清扫描品质。本书深入浅出地覆盖了立体几何的核心内容,不仅包含了传统立体几何的严谨论述,还扩展到常用曲线的性质、基本的测量理论及其在高等几何中的应用,形成了一套全面而系统的知识体系 【下载地址】几何学教程立体几何卷.pdf分享 项目地址: https://gitcode.com/Open-source-documentation-tutorial/2f7f0

项目介绍

《几何学教程(立体几何卷)》是由著名数学家J. Hadamard编著的经典教材,现以高清中文PDF形式呈现。本书不仅涵盖了立体几何的核心内容,还深入探讨了常用曲线的性质、基本的测量理论及其在高等几何中的应用,形成了一套全面而系统的知识体系。无论是高中生、数学爱好者,还是教师和研究人员,都能从中受益匪浅。

项目技术分析

本书的技术价值在于其详尽严谨的内容编排和高质量的扫描版本。Hadamard以其深刻的见解和教学智慧,将复杂的立体几何知识以易于理解的方式呈现。PDF版本确保了文字与图表的清晰可读,保持了原书的学习体验。此外,丰富的习题和详细的解答,为读者提供了自我检测和深化理解的机会。

项目及技术应用场景

《几何学教程(立体几何卷)》适用于多种应用场景:

  • 教育领域:适合高中及以上学生作为教材或参考书,帮助他们建立扎实的几何学基础。
  • 自学提升:数学爱好者可以通过本书深入学习立体几何,提升自己的数学素养。
  • 教学辅助:教师和研究人员可以利用本书进行教学或研究,获取丰富的几何学知识。

项目特点

  • 详尽严谨:对立体几何的每一块知识点进行了细致且逻辑严密的讲解,适合不同层次学习者的需求。
  • 广泛涵盖:除了基础内容,书中还涉及了不少高级话题,丰富读者的几何学视野。
  • 习题丰富:配备了大量习题和详细的解答,非常适合学生自我检测和深化理解。
  • 经典传承:J. Hadamard的原著以其深刻见解和教学智慧闻名,此中文版让中国读者更容易接近这门深奥而又美丽的学科。
  • 扫描质量:此PDF版本确保文字与图表清晰可读,保持原书的学习体验。

开始您的几何学探索之旅,发现空间之美,从《几何学教程(立体几何卷)》开始!

【下载地址】几何学教程立体几何卷.pdf分享 《几何学教程(立体几何卷)》是一本由著名数学家J. Hadamard编著的经典教材,现以中文PDF形式提供,保证高清扫描品质。本书深入浅出地覆盖了立体几何的核心内容,不仅包含了传统立体几何的严谨论述,还扩展到常用曲线的性质、基本的测量理论及其在高等几何中的应用,形成了一套全面而系统的知识体系 【下载地址】几何学教程立体几何卷.pdf分享 项目地址: https://gitcode.com/Open-source-documentation-tutorial/2f7f0

英文版 内容: 第0章 基础知识 1.多复变初步 柯西公式及应用 多变量 魏尔斯特拉斯定理及其推论 解析簇 2.复流形 复流形 子流形与子簇 De Rham和Dolbeault上同调 复流形上的积分 3.层和上同调 起源:米塔一列夫勒问题 层 层的上同调 De Rham定理 Colbeault定理 4.流形的拓扑 闭链的相交 庞加莱对偶 解析闭链的相交 5.向量丛、联络和曲率 全纯复向量丛 度量、联络和曲率 6.紧致复流形的调和理论 霍奇定理 霍奇定理I的证明??局部理论 霍奇定理II的证明??全局理论 霍奇定理的应用 7.Kahler流形 Kahler条件 霍奇恒等式和霍奇分解 Lefschetz分解 第1章 复代数簇 1.除子与线丛 除子 线丛 线丛的陈类 2.消灭定理及推论 小平消灭定理 超平面截面的Lefsclaetz定理 定理 (1,1)类的Lefsclaetz定理 3.代数簇 解析簇和代数簇 簇的次数 代数簇的切空间 4.小平嵌入定理 线丛和到投影空间的映射 胀开 小平定理的证明 5.格拉斯曼理论 定义 胞腔分解 Schubert微积分 万有丛 Plucker嵌入 第2章 Riemann曲面和代数曲线 1.预备知识 Riemann曲面的嵌入 Riemann-Hurwitz公式 亏格公式 G=1,1的情况 2.阿贝尔定理 阿贝尔定理??第一种描述 第一互反定律及推论 阿贝尔定理??第二种描述 雅可比反演问题 3.曲线的线性系统 互反定律II Riemann-Roch公式 典范曲线 特殊线性系统I 超椭圆曲线与黎曼点数 特殊线性系统II 4.Plucker公式 伴随曲线 分歧 广义Plucker公式I 广义Plucker公式II Weierstrass点 平面曲线的Plucker公式 5.对应 定义和公式 空间曲线的几何性 特殊线性系统III 6.复环面和Abel簇 黎曼条件 复环面上的线丛 函数 Abel簇上的群结构 固有公式 7.曲线及曲线的行列式 初步知识 黎曼定理 黎曼奇异定理 特殊线性系统IV Torelli定理 第3章 深入技巧 1.分布与流 定义;幂公式 平滑与整齐 流的上同调 2.流在复分析上的应用 解析簇相关的流 解析簇的相交数 莱维扩展与常态映射定理 3.陈类 定义 高斯博内公式 关于全纯向量丛陈类讨论 4.不动点与剩余公式 莱夫谢茨不动点公式 全纯莱夫谢茨不动点公式 博特剩余公式 广义Hirzebruch-Riemann-Roch公式 5.谱序列及其应用 滤子化双重复形的谱序列 超上同调 二类微分 勒雷谱序列 第4章 曲面 1.初步知识 2.相交数、从属公式与Riemann-Poch 胀开与收缩 二次曲面 三次曲面 2.有理映射 有理和双有理映射 曲线与代数面 面之间双有理映射的结构 3.有理曲面I 诺特引理 有理直纹面 广义有理曲面 极小度曲面 最大类曲线 施泰纳构造 Enriques-Petri定理 4.有理曲面II Castelnuovo-Enriques定婴 Enriques曲面 修正的三次曲面 中两个二次曲面的相交 5.无理曲面 阿尔巴内塞映射 无理直纹曲面 椭圆曲面简介 小平数和分类定理I 分类定理II K-3曲面 诺特曲面 6.诺特公式 平滑超平面的诺特公式 胀开子流形 曲面的寻常奇点 一般曲面的诺特公式 几个例子 曲面的孤立奇点 第5章 留数(残数) 1.留数的基本性质 定义和上同调解释 整体留数定理 变换法则与局部对偶性 2.留数的应用 相交数 有限全纯映射 平面投影几何中的应用 3.交换同调代数应用初步 交换代数 同调代数 科斯居尔复形及其应用 凝聚层的简短游程 4.整体对偶 整体扩展 广义整体对偶定理解释 整体扩展和带孤立零点的向量场 整体对偶和曲面上点的剩余 模的扩张 曲面上的点和秩2向量丛 留数和向量丛 第6章 二次线丛 1.二次曲面初步 二次曲面的秧 二次曲面中的线性空间 二次曲面的线性系统 五个锥线论问题 2.二次线丛介绍 格拉斯曼G(2,4)几何 线丛 二次线丛和伴随库默尔曲面I 二次线丛的奇异线 两个构形 3.二次线丛的线 二次线丛的线簇 线簇上的曲线 两个修正构形 群法则 4.二次线丛:Reprise 二次线丛和伴随库默尔曲面II 二次线丛的有理性 索引
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

俞愉葵Ken

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值