《从抛物线谈起混沌动力学引论第2版》资源介绍
《从抛物线谈起混沌动力学引论》第二版,由郝柏林著,2013年版。本书是理工科大学高年级学生、研究生和青年教师扩展知识的读物,亦可供教学研究参考。
资源简介
混沌现象广泛存在于自然界和数学模型中,是确定论系统在没有外来随机因素时表现出的随机行为。本书从一维抛物线映射出发,深入浅出地引导读者进入耗散系统混沌动力学的世界。抛物线映射作为简单而“可解”的模型,包含统计物理和非线性科学中众多深刻概念,如周期和混沌吸引子、标度律和临界指数、李雅普诺夫指数和熵、分形分维和重正化群等。
本书的阅读需要读者具备理工科大学低年级的微分学知识,并鼓励读者培养自己推导公式及上机实践的习惯。
目录
-
最简单的非线性模型
- 1.1 什么是非线性
- 1.2 非线性演化方程
- 1.3 虫口变化的抛物线模型
- 1.4 其他简单映射举例
-
抛物线映射
- 2.1 线段映射的一般讨论
- 2.2 稳定和超稳定周期轨道
- 2.3 分岔图里的标度性和自相似性
- 2.4 分岔图中暗线的解释
- 2.5 周期窗口何处有--字提升法
- 2.6 实用符号动力学概要
-
倍周期分叉序列
- 3.1 隐函数定理和倍周期分叉
- 3.2 倍周期分岔定理的证明
- 3.3 施瓦茨导数和辛格尔定理的证明
- 3.4 重正化群方程和标度因子
- 3.5 线性化重正化群方程和收敛速率
- 3.6 外噪声和它的标度因子
-
切分岔
- 4.1 周期3的诞生
- 4.2 阵发混沌的几何图像
- 4.3 阵发混沌的标度理论
- 4.4 阵发混沌的重整化理论
- 4.5 1倍周期序列的标度性质
-
一维映射的周期数目
- 5.1 沙尔可夫斯基序列和李-约克定理
- 5.2 数论函数和波伊阿定理
- 5.3 单峰映射的周期窗口数目
- 5.4 多峰映射的周期窗口数目
- 5.5 周期轨道与纽结
-
混沌映射
- 6.1 满映射
- 6.2 轨道点的密度分布
- 6.3 同宿轨道
- 6.4 混沌吸引子的激变
- 6.5 粗粒混沌
-
吸引子的刻画
- 7.1 功率谱分析
- 7.2 李雅普诺夫指数
- 7.3 维数的各种定义
- 7.4 一维映射中的分形
- 7.5 满映射维数谱中的“相变”
- 7.6 测度熵和拓扑熵
- 7.7 符号序列的语法复杂性
-
过渡过程
- 8.1 倍周期分岔点附近的临界慢化指数
- 8.2 过渡过程的功率谱
- 8.3 奇怪排斥子和逃逸速率
- 8.4 过渡混沌
参考文献
本书提供了深入理解混沌动力学的丰富资料,适合对相关领域感兴趣的读者学习和研究。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考