Wococo项目中的Sim2Sim部署问题分析与解决方案
wococo 项目地址: https://gitcode.com/gh_mirrors/wo/wococo
项目背景
Wococo是一个基于强化学习的四足机器人控制项目,该项目在Isaac Gym仿真环境中实现了高性能的机器人运动控制。然而,当尝试将训练好的策略迁移到MuJoCo仿真环境时,出现了控制失效的问题。
问题现象
在Isaac Gym环境中,Wococo项目能够正常运行并实现稳定的机器人运动控制。但当尝试通过sim2sim.py脚本将策略部署到MuJoCo环境时,机器人无法保持平衡,出现控制失效的情况。
问题分析
经过深入排查,发现主要存在以下几个关键问题:
-
动作裁剪错误:原始代码中对动作的裁剪使用了错误的参数设置,将动作值限制在了一个固定值而非对称范围内,导致控制信号失真。
-
参数配置不当:MuJoCo环境中的PD控制器参数(kps和kds)与Isaac Gym环境存在差异,需要进行适当调整。
-
观测数据处理:观测数据的预处理方式在两个仿真环境中不完全一致,特别是关节历史数据的处理需要特别注意。
解决方案
针对上述问题,我们实施了以下改进措施:
-
修正动作裁剪逻辑: 将原来的错误代码:
action = np.clip(action, clip_actions, clip_actions)
修改为:
action = np.clip(action, -clip_actions, clip_actions)
-
优化PD控制器参数: 根据MuJoCo环境的特性,调整了关节的PD控制参数,确保控制信号的响应特性与Isaac Gym环境一致。
-
完善观测数据处理: 对关节历史数据的处理流程进行了优化,确保观测数据在两个仿真环境中的一致性。
改进效果
经过上述修改后,Wococo项目成功实现了从Isaac Gym到MuJoCo的sim2sim迁移。机器人能够在MuJoCo环境中保持稳定运动,控制效果与原始环境基本一致。
技术建议
对于希望进一步优化sim2sim性能的开发者,我们建议:
-
调整奖励函数权重:根据具体任务需求,适当调整各项奖励的权重系数,可以改善控制性能。
-
启用域随机化:在训练阶段开启域随机化功能,可以增强策略的鲁棒性,提高sim2sim的成功率。
-
分阶段训练:采用先简单后复杂的分阶段训练策略,先在不开启域随机化的情况下训练基础策略,再逐步增加随机化强度进行微调。
总结
本文详细分析了Wococo项目在sim2sim迁移过程中遇到的问题,并提供了有效的解决方案。通过修正动作裁剪错误、优化控制参数和完善数据处理流程,成功实现了跨仿真环境的策略迁移。这些经验对于其他类似项目的开发具有重要的参考价值。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考