ACT项目安装和配置指南

ACT项目安装和配置指南

act act 项目地址: https://gitcode.com/gh_mirrors/act/act

1. 项目基础介绍和主要编程语言

项目名称: ACT (Action Chunking with Transformers)

项目简介: ACT是一个基于Transformer模型的动作分块实现,主要用于模拟环境和真实环境中的训练和评估。项目包含两个模拟环境:Transfer Cube和Bimanual Insertion。用户可以在模拟环境中训练和评估ACT策略,也可以在真实环境中应用。

主要编程语言: Python

2. 项目使用的关键技术和框架

  • Transformer模型: 用于动作分块的核心模型。
  • Mujoco: 用于模拟环境的物理引擎。
  • DM_Control: 基于Mujoco的控制库,提供更高级的控制接口。
  • PyTorch: 用于深度学习的框架,支持ACT模型的训练和推理。
  • OpenCV: 用于图像处理和可视化。
  • Matplotlib: 用于数据可视化。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

  1. 操作系统: 推荐使用Linux或macOS系统。
  2. Python版本: 推荐使用Python 3.8.10。
  3. 依赖库: 需要安装一些Python库,如PyTorch、Mujoco、DM_Control等。

详细安装步骤

步骤1: 克隆项目仓库

首先,从GitHub克隆ACT项目到本地:

git clone https://github.com/tonyzhaozh/act.git
cd act
步骤2: 创建虚拟环境

建议使用conda创建一个虚拟环境来管理依赖:

conda create -n act_env python=3.8.10
conda activate act_env
步骤3: 安装依赖库

在虚拟环境中安装所需的Python库:

pip install torch torchvision
pip install pyquaternion pyyaml rospkg pexpect
pip install mujoco==2.3.7 dm_control==1.0.14
pip install opencv-python matplotlib einops packaging h5py ipython
步骤4: 安装ACT项目

进入项目目录并安装ACT项目:

cd act/detr
pip install -e .
步骤5: 验证安装

安装完成后,可以通过运行示例脚本来验证安装是否成功:

python3 record_sim_episodes.py --task_name sim_transfer_cube_scripted --dataset_dir <data save dir> --num_episodes 50

如果脚本成功运行并生成数据,说明安装配置成功。

总结

通过以上步骤,您已经成功安装并配置了ACT项目。接下来,您可以根据项目文档进一步探索如何在模拟环境中训练和评估ACT策略,或者在真实环境中应用。

act act 项目地址: https://gitcode.com/gh_mirrors/act/act

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柳宁俏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值