ACT项目安装和配置指南
act 项目地址: https://gitcode.com/gh_mirrors/act/act
1. 项目基础介绍和主要编程语言
项目名称: ACT (Action Chunking with Transformers)
项目简介: ACT是一个基于Transformer模型的动作分块实现,主要用于模拟环境和真实环境中的训练和评估。项目包含两个模拟环境:Transfer Cube和Bimanual Insertion。用户可以在模拟环境中训练和评估ACT策略,也可以在真实环境中应用。
主要编程语言: Python
2. 项目使用的关键技术和框架
- Transformer模型: 用于动作分块的核心模型。
- Mujoco: 用于模拟环境的物理引擎。
- DM_Control: 基于Mujoco的控制库,提供更高级的控制接口。
- PyTorch: 用于深度学习的框架,支持ACT模型的训练和推理。
- OpenCV: 用于图像处理和可视化。
- Matplotlib: 用于数据可视化。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
- 操作系统: 推荐使用Linux或macOS系统。
- Python版本: 推荐使用Python 3.8.10。
- 依赖库: 需要安装一些Python库,如PyTorch、Mujoco、DM_Control等。
详细安装步骤
步骤1: 克隆项目仓库
首先,从GitHub克隆ACT项目到本地:
git clone https://github.com/tonyzhaozh/act.git
cd act
步骤2: 创建虚拟环境
建议使用conda创建一个虚拟环境来管理依赖:
conda create -n act_env python=3.8.10
conda activate act_env
步骤3: 安装依赖库
在虚拟环境中安装所需的Python库:
pip install torch torchvision
pip install pyquaternion pyyaml rospkg pexpect
pip install mujoco==2.3.7 dm_control==1.0.14
pip install opencv-python matplotlib einops packaging h5py ipython
步骤4: 安装ACT项目
进入项目目录并安装ACT项目:
cd act/detr
pip install -e .
步骤5: 验证安装
安装完成后,可以通过运行示例脚本来验证安装是否成功:
python3 record_sim_episodes.py --task_name sim_transfer_cube_scripted --dataset_dir <data save dir> --num_episodes 50
如果脚本成功运行并生成数据,说明安装配置成功。
总结
通过以上步骤,您已经成功安装并配置了ACT项目。接下来,您可以根据项目文档进一步探索如何在模拟环境中训练和评估ACT策略,或者在真实环境中应用。