Parler-TTS 项目推荐
1. 项目基础介绍和主要编程语言
Parler-TTS 是一个轻量级的文本到语音(TTS)模型,能够生成高质量、自然的声音。该项目由 Hugging Face 开发,主要使用 Python 编程语言。它基于 PyTorch 框架,并利用了 Hugging Face 的 Transformers 库。
2. 项目核心功能
Parler-TTS 的核心功能包括:
- 高质量语音生成:能够生成自然、高保真的语音,模仿特定说话者的风格(如性别、音调、语速等)。
- 开源和可扩展:所有数据集、预处理代码、训练代码和权重均公开,允许社区在此基础上开发自己的 TTS 模型。
- 多说话者支持:支持多个说话者,可以通过文本描述指定特定的说话者。
- 快速推理优化:支持 SDPA 和 Flash Attention 2 兼容性,以及模型编译,显著提高生成速度。
3. 项目最近更新的功能
最近,Parler-TTS 项目发布了两个新的模型检查点:
- Parler-TTS Mini:一个 880M 参数的模型。
- Parler-TTS Large:一个 2.3B 参数的模型。
这些模型检查点在 45k 小时的音频数据上进行了训练,并且代码经过优化,生成速度更快。此外,项目还增加了以下功能:
- SDPA 和 Flash Attention 2 兼容性:提高了模型的推理速度。
- 模型编译功能:进一步优化了生成效率。
- 多说话者支持:增强了模型对特定说话者的识别和生成能力。
通过这些更新,Parler-TTS 不仅在语音质量上有所提升,还在推理速度和灵活性方面取得了显著进展。