NVIDIA GPU设备插件在Kubernetes上的安装与配置完全指南
项目基础介绍及编程语言
NVIDIA GPU设备插件是由NVIDIA官方维护的一个开源项目,它允许在Kubernetes集群中自动管理GPU资源,使容器能够访问节点上的GPU。此项目主要使用Golang作为开发语言,兼容Kubernetes环境下的容器化应用,让深度学习、高性能计算等场景可以更便捷地利用GPU算力。
关键技术和框架
- Kubernetes Device Plugin机制:该插件基于Kubernetes的设备插件架构实现,使得Kubernetes能够识别并管理NVIDIA GPU。
- Docker和Containerd支持:要求环境中已安装NVIDIA Docker或NVIDIA Container Toolkit,以便容器可以访问GPU资源。
- Helm图表部署:提供了Helm图表以简化在Kubernetes中的部署过程。
- GPU Feature Discovery:支持自动发现GPU特性,并通过标签添加到节点上,便于自动化的GPU节点选择。
安装和配置步骤
准备工作
系统要求
- NVIDIA驱动:至少版本384.81。
- NVIDIA Docker / Container Toolkit:对于NVIDIA Docker,需>=2.0;NVIDIA Container Toolkit应>=1.7.0。
- Kubernetes版本:>=1.10。
- 配置低级别运行时:确保nvidia-container-runtime被设置为默认运行时。
安装NVIDIA Container Toolkit
对于基于Debian的系统(如Ubuntu),执行以下命令安装NVIDIA Container Toolkit并配置Docker和containerd(如果适用):
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-docker2
sudo systemctl restart docker
对于CRI-O配置,请按NVIDIA文档指引,在/etc/crio/crio.conf.d/99-nvidia.conf
配置文件中指定nvidia-container-runtime为默认运行时。
安装NVIDIA GPU设备插件
手动部署
对于快速测试,可以直接在所有GPU节点上部署静态DaemonSet:
kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.16.1/deployments/static/nvidia-device-plugin.yml
使用Helm进行生产部署
-
添加NVIDIA设备插件的Helm仓库(假设仓库地址已经更新):
helm repo add nvdp https://nvidia.github.io/k8s-device-plugin helm repo update
-
部署Helm chart,创建必要的命名空间并部署插件:
helm upgrade -i nvdp nvdp/nvidia-device-plugin \ --namespace=nvidia-device-plugin \ --create-namespace \ --version=0.16.1
配置详情
设备插件可以通过命令行参数、环境变量或者配置文件来定制配置。例如,通过Helm图鉴可以调整如GPU资源限制、健康检查策略等配置项。
请求GPU资源
在Pod定义中加入对GPU的请求:
apiVersion: v1
kind: Pod
metadata:
name: gpu-pod
spec:
containers:
- name: cuda-container
image: nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda10.2
resources:
limits:
nvidia.com/gpu: 1
tolerations:
- key: "nvidia.com/gpu"
operator: "Exists"
effect: "NoSchedule"
完成以上步骤后,您的Kubernetes集群将能够管理和分配GPU资源给相应的容器化作业,从而为深度学习和其他GPU密集型任务提供高效的支持。记住,针对特定需求,深入阅读官方文档以获取更多高级配置选项是关键。