ComfyUI-WD14-Tagger:图像元数据标签提取利器

ComfyUI-WD14-Tagger:图像元数据标签提取利器

ComfyUI-WD14-Tagger A ComfyUI extension allowing for the interrogation of booru tags from images. ComfyUI-WD14-Tagger 项目地址: https://gitcode.com/gh_mirrors/co/ComfyUI-WD14-Tagger

项目基础介绍及编程语言

ComfyUI-WD14-Tagger 是一个专为 ComfyUI 设计的扩展插件,它能够从图像中提取和识别类似于Booru网站风格的标签。此项目深植于开源社区,由 SmilingWolf/wd-v1-4-tagstoriato/stable-diffusion-webui-wd14-tagger 的工作基础上发展而来,并且完全采用 Python 编程,使之成为处理图像元数据的灵活工具。

核心功能

该扩展的核心能力在于其对图像的“审问”能力,即通过模型分析图像内容来生成一系列可能的标签。支持多种模型,包括最新的MOAT和受欢迎的ConvNextV2,允许用户通过阈值设定来过滤出信心度高的标签。特别的是,它不仅能够处理单个图像,还能够批量处理,提高效率。此外,通过简单的右键菜单操作,即可在任何显示图像的节点(如LoadImage、SaveImage或PreviewImage)上快速调用WD14 Tagger进行即时标签分析。

最近更新的功能

截至最后一次记录的更新日期2023年5月14日,ComfyUI-WD14-Tagger 进行了重要升级,其中包括:

  • 迁移至独立仓库,使得项目管理更为清晰。
  • 增加了模型自动下载功能,便于用户获取必要的模型资源,简化安装流程。
  • 增强多输入支持,提升了用户体验,使得处理多个图像任务更加便捷。

此外,项目提供了详细的配置选项,允许用户自定义排除特定标签,以及在离线环境下手动下载和设置模型,确保即使在网络不畅时也能继续使用。

总之,ComfyUI-WD14-Tagger 对于任何寻求通过人工智能提升图像管理、分类和搜索效率的开发者或爱好者来说,都是一个不可或缺的开源工具。通过这个强大的插件,用户可以轻松地让自己的图像库变得更有组织性且易于检索。

ComfyUI-WD14-Tagger A ComfyUI extension allowing for the interrogation of booru tags from images. ComfyUI-WD14-Tagger 项目地址: https://gitcode.com/gh_mirrors/co/ComfyUI-WD14-Tagger

### 关于WD14模型反推过程中的中文设置 在使用ComfyUI-WD14-Tagger进行图像标签提取以及提示词反推的过程中,对于中文的支持主要依赖于模型本身的能力和环境配置。由于该工具最初设计可能更倾向于英文环境,在处理中文时需要注意一些特定事项。 #### 环境准备 为了确保能够正确识别并生成中文标签,建议先确认所使用的Python环境中已安装必要的中文分词库和其他相关包,比如`jieba`用于中文分词[^1]。 ```bash pip install jieba ``` #### 参数调整 当涉及到中文场景下的应用时,适当调节`threshold`(全局阈值)和`character_threshold`(针对字符或对象个体化的阈值),可以帮助获得更加精准的结果。通常情况下,因为汉字相较于字母具有更高的复杂性和独特性,所以可能需要降低这些数值以便捕捉到更多细节特征[^3]。 #### 字体文件配置 如果计划展示含有中文字符的内容,则还需要保证系统中有合适的中文字体可用,并且在程序内部指定路径加载相应的字体文件。这一步骤虽然不是直接关联到WD14模型的功能实现上,但对于最终呈现效果至关重要[^2]。 #### 使用实例 假设已经按照上述指导完成了前期准备工作,下面是一个简单的例子来演示如何利用ComfyUI-WD14-Tagger执行带有中文描述的图片分析: ```python from comfyui_wd14_tagger import WDTAGGER # 假设这是导入方式 wdtagger = WDTAGGER() image_path = "path/to/your/image.jpg" tags, confidence_scores = wdtagger.extract_tags(image_path=image_path) for tag, score in zip(tags, confidence_scores): print(f"{tag}: {score}") ``` 此代码片段展示了基本的操作流程,即创建WDTAGGER类的对象,调用其方法传入待检测的图片地址,最后遍历输出每一个被标记出来的关键词及其对应的置信度得分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乌连俭Eighth

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值