ComfyUI-WD14-Tagger:图像元数据标签提取利器
项目基础介绍及编程语言
ComfyUI-WD14-Tagger 是一个专为 ComfyUI 设计的扩展插件,它能够从图像中提取和识别类似于Booru网站风格的标签。此项目深植于开源社区,由 SmilingWolf/wd-v1-4-tags 和 toriato/stable-diffusion-webui-wd14-tagger 的工作基础上发展而来,并且完全采用 Python 编程,使之成为处理图像元数据的灵活工具。
核心功能
该扩展的核心能力在于其对图像的“审问”能力,即通过模型分析图像内容来生成一系列可能的标签。支持多种模型,包括最新的MOAT和受欢迎的ConvNextV2,允许用户通过阈值设定来过滤出信心度高的标签。特别的是,它不仅能够处理单个图像,还能够批量处理,提高效率。此外,通过简单的右键菜单操作,即可在任何显示图像的节点(如LoadImage、SaveImage或PreviewImage)上快速调用WD14 Tagger进行即时标签分析。
最近更新的功能
截至最后一次记录的更新日期2023年5月14日,ComfyUI-WD14-Tagger 进行了重要升级,其中包括:
- 迁移至独立仓库,使得项目管理更为清晰。
- 增加了模型自动下载功能,便于用户获取必要的模型资源,简化安装流程。
- 增强多输入支持,提升了用户体验,使得处理多个图像任务更加便捷。
此外,项目提供了详细的配置选项,允许用户自定义排除特定标签,以及在离线环境下手动下载和设置模型,确保即使在网络不畅时也能继续使用。
总之,ComfyUI-WD14-Tagger 对于任何寻求通过人工智能提升图像管理、分类和搜索效率的开发者或爱好者来说,都是一个不可或缺的开源工具。通过这个强大的插件,用户可以轻松地让自己的图像库变得更有组织性且易于检索。