【stable diffusion】图片批量自动打标签、标签批量修改(BLIP、wd14)用于训练SD或者LORA模型

参考:

2025.02.20最新教程——【FLUX微调+风格训练】从零免费训练自定义图像风格

一、sd-webui通用的打标界面

1.1 打标界面
根据需求,选择通用打标模型(BLIP)还是动漫打标模型(deepbooru)
设置好后,选择预处理,会开始下载模型,可开代理加速
在这里插入图片描述
1.2 BLIP打标结果
在这里插入图片描述

1.3 Deepbooru标注结果 (标签效果比下一段介绍的wd-14差一些)
在这里插入图片描述

二、sd-webui插件下wd14自动对动漫打标

插件名称: stable-diffusion-webui-wd14-tagger

安装与下载方式

可参考

stable-diffusion-webui 扩展模块安装

在 extensions/文件夹下拉取源码

git clone https://github.com/toriato/stable-diffusion-webui-wd14-tagger.git extensions/tagger

2.1 选择Tagger下的Batch from directory

在这里插入图片描述

2.2 输入图片的路径

图片与服务器应在同一台电脑

批量打标

在这里插入图片描述

单张图片看效果

可以了解到一些打标签原理,他是一个多类分类器,输出得每个词都是有概率的,一般输出置信度40%以上的词。
在这里插入图片描述

2.3 等待模型自动下载(可能卡住)

在这里插入图片描述

2.4 打标结果

在这里插入图片描述

图片与对应tag结果1
在这里插入图片描述

图片与对应tag结果2

在这里插入图片描述

三、sd-webui编辑标签

https://github.com/toshiaki1729/stable-diffusion-webui-dataset-tag-editor
下载:
在这里插入图片描述

3.1 导入自动打标后的图片

在这里插入图片描述

3.2 批量修改添加

首先在所有tag前面加一个风格tag: cike567
在这里插入图片描述

打开txt查看

在这里插入图片描述

3.3 批量删除

在这里插入图片描述

四、lora训练集成开发工具自动打标

dreambooth、lora、sd模型微调的GUI环境安装(cuda驱动、pytorch、xformer)

(下载模型时间长,过程是类似的,本文暂不介绍了)
在这里插入图片描述

4.1 BLIP打标

首先会下载模型,下载非常慢
在这里插入图片描述

扩展——方法 阿里线上平台打标

https://modelscope.cn/aigc/modelTraining
在这里插入图片描述

上传图片后选择 打标方式

在这里插入图片描述

通义千问 单词打标

在这里插入图片描述
翻译
在这里插入图片描述

joycaption是连续的句子,适合flux之类的

在这里插入图片描述

详情
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曾小蛙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值