Marker:PDF转Markdown快速准确工具安装配置指南
项目地址:https://gitcode.com/gh_mirrors/ma/marker
项目基础介绍与编程语言
Marker 是一个开源项目,旨在将PDF文档迅速且精准地转换成Markdown格式。它特别适用于书籍和科学论文等类型文档的转换,并支持所有语言。该工具采用一系列深度学习模型来处理文本提取、页面布局检测、文本清理和格式化等工作。Marker基于Python开发,利用PyTorch作为其核心计算库,同时在有需要时通过OCR技术增强文本识别能力。
关键技术和框架
技术要点:
- 深度学习模型:用于文本提取与分析。
- OCR(Optical Character Recognition):包括Surya和Tesseract作为可选的OCR引擎,用于提升对非扫描文本或模糊文字的识别。
- 多语言支持:自动识别并处理不同语言的文档。
- GPU/CPU/MPS支持:允许用户根据硬件配置选择最佳运行环境。
框架与依赖:
- PyTorch:用于构建和训练深度学习模型。
- Streamlit(可选):用于创建交互式应用界面。
- OCRMyPDF(可选):增强OCR功能,特别是对于CPU环境。
安装与配置详细步骤
准备工作
确保你的系统满足以下条件:
- Python 3.9或更高版本。
- PyTorch:请根据你的系统配置安装合适版本,尤其是GPU用户需确保CUDA兼容性。
- (可选) OCRMyPDF:如果计划使用额外的OCR功能。
步骤一:安装Python和PyTorch
首先,安装最新版Python 3.9以上。接着,在命令行中安装PyTorch:
pip install torch torchvision
对于CPU环境,若默认安装了GPU版本的PyTorch失败,需指定安装CPU版本:
pip install torch==1.10.1+cpu torchvision==0.11.2+cpu torchaudio===0.10.1+cpu -f https://download.pytorch.org/whl/lts/1.10/torch_lts.html
步骤二:安装Marker
接下来,安装Marker及其依赖:
pip install marker-pdf
如果你想要使用OCRMyPDF作为OCR后端,执行以下命令:
pip install marker-pdf ocrmypdf
配置环境
- 编辑
marker/settings.py
或通过设置环境变量来调整配置。TORCH_DEVICE
: 自动检测,默认情况下,但可以通过环境变量调整,如TORCH_DEVICE=cuda
指定使用GPU。OCR_ENGINE
: 默认使用Surya,更注重准确性,但CPU上较慢;可通过设置为ocrmypdf
以提高速度(需先安装OCRMyPDF)。
使用说明
单个文件转换
marker_single /path/to/yourfile.pdf /path/to/output/folder --langs "zh,en"
参数解释:
/path/to/yourfile.pdf
: 要转换的PDF文件路径。/path/to/output/folder
: 输出Markdown文件的目录。--langs
: 可选,定义文档语言,逗号分隔,例如“zh,en”。
多文件批量转换
对于多文件转换,将单个文件路径替换为输入文件夹路径:
marker /path/to/input/folder /path/to/output/folder --workers 4
这里的--workers
指定了并发处理的PDF文件数量。
运行交互式应用(可选)
pip install streamlit
streamlit run marker_gui.py
此命令将启动一个Web界面,让你能够上传PDF并查看转换结果。
至此,您已成功安装并基本配置了Marker项目,可以开始探索如何将PDF文档高效转化为Markdown格式了。记得根据实际需求调整配置,以达到最优的转换效果。