FJSP调度问题标准算例集

FJSP调度问题标准算例集

【下载地址】FJSP调度问题标准算例集 FJSP调度问题标准算例集本仓库提供了一个资源文件的下载,该资源文件包含了FJSP(Flexible Job-Shop Scheduling Problem)调度问题的标准算例集 【下载地址】FJSP调度问题标准算例集 项目地址: https://gitcode.com/open-source-toolkit/f45cc

本仓库提供了一个资源文件的下载,该资源文件包含了FJSP(Flexible Job-Shop Scheduling Problem)调度问题的标准算例集。这些算例集广泛用于学术研究和算法测试,涵盖了多个知名数据集,为研究人员和开发者提供了丰富的实验数据。

资源文件内容

本资源文件包含了以下几个主要的数据集:

  1. Barnes数据集:由Barnes等人收集和整理,包含了多个FJSP问题的实例。
  2. Brandimarte_Data数据集:由Brandimarte提供,包含了多个不同规模的FJSP问题实例。
  3. Dauzere_Data数据集:由Dauzere等人整理,提供了多个经典的FJSP问题实例。
  4. Hurink_Data数据集:由Hurink等人收集,包含了多个FJSP问题的实例,适用于多种调度算法的研究。
  5. Kacem数据集:由Kacem等人提供,包含了多个FJSP问题的实例,适用于启发式算法的研究。

使用说明

  1. 下载资源文件:请点击仓库中的下载链接,获取包含上述数据集的资源文件。
  2. 解压文件:下载后,解压资源文件,您将获得多个数据集文件。
  3. 使用数据集:根据您的研究或开发需求,选择合适的数据集进行实验和测试。

适用场景

本资源文件适用于以下场景:

  • 学术研究:研究人员可以使用这些数据集进行FJSP调度问题的算法研究,验证新算法的性能。
  • 算法测试:开发者可以使用这些数据集测试和优化FJSP调度算法的实现。
  • 教学实验:教师和学生可以使用这些数据集进行FJSP调度问题的教学实验,加深对问题的理解。

注意事项

  • 请确保在使用数据集时,遵循相关的学术道德和版权规定。
  • 本资源文件仅供学习和研究使用,不得用于商业用途。

希望本资源文件能够为您的研究和开发工作提供帮助!

【下载地址】FJSP调度问题标准算例集 FJSP调度问题标准算例集本仓库提供了一个资源文件的下载,该资源文件包含了FJSP(Flexible Job-Shop Scheduling Problem)调度问题的标准算例集 【下载地址】FJSP调度问题标准算例集 项目地址: https://gitcode.com/open-source-toolkit/f45cc

### FJSP标准及其解析方法 #### 概述 FJSP(柔性作业车间调度问题)的标准通常用于评估不同法的有效性和效率。这些提供了多种场景下的数据,以便研究者能够测试其提出的解决方案在实际应用中的表现。常见的FJSP包括Kacem实、Brandimarte实以及Dauzère-Pérès和Lasserre实等。 #### Kacem 实 Kacem等人提出了一个广泛使用的FJSP合[Kacem et al., 2002][^1]。此合包含了若干个不同的案,每个案定义了一组特定数量的工作件和机器,并规定了每项工作的工艺路线选项及相应的加工时间。通过调整参数如工作量大小、可用资源数目等因素,可以模拟各种复杂的生产环境。 #### Brandimarte 实 Brandimarte构建了一系列基于随机生成规则的FJSP测试问题[Brandimarte, 1993][^2]。这类实的特点在于它们能代表不同类型的实际制造系统特征,从而使得所开发的方法更具普适性。具体来说,Brandimarte的数据集中考虑到了多道工序的选择灵活性,这增加了求解难度同时也提高了模型的真实性。 #### Dauzère-Pérès 和 Lasserre 实 Dauzère-Pérès与Lasserre共同设计的一套FJSP基准测试[Dauzère-Pérès & Lasserre, 1997][^3]同样被频繁引用作为评价新法性能的基础。这套数据不仅涵盖了广泛的规模范围内的问题设定,而且特别强调了对于复杂约束条件的支持,如有限缓冲区容量限制或并行机设置下任务分配策略的影响分析。 #### 解析方法 针对上述提到的各种类型的FJSP,在解析过程中一般会遵循以下几个步骤: - **输入读取**:从文件或其他形式获取原始数据,包括但不限于工件列表、各阶段所需的设备清单及其对应的处理周期。 - **预处理**:对收到的信息做必要的转换和整理,确保后续计过程顺利进行;可能涉及去除冗余信息、填补缺失值等工作。 - **建模**:依据具体的业务逻辑建立数学规划模型或者启发式框架来描述整个系统的运作机制;此时应充分考虑到所有潜在变量之间的相互关系。 - **求解器配置**:选择合适的优化工具包实施迭代运直至找到最优解或是满意程度较高的近似方案;期间可根据实际情况调节各类超参以提升收敛速度/质量。 - **结果验证**:对比理论预期同实验所得之间是否存在显著差异;如果发现异常则返回前几步重新审视假设前提是否合理可靠。 ```python import pandas as pd def load_fjsp_instance(file_path): """加载FJSP""" data = pd.read_csv(file_path) jobs = [] machines = set() operations = [] for index, row in data.iterrows(): job_id = int(row['job']) machine_options = list(map(int, str.split(str(row['machines']), ', '))) time_options = list(map(float, str.split(str(row['times']), ', '))) jobs.append(job_id) machines.update(machine_options) operation = { "job": job_id, "machine_options": machine_options, "time_options": time_options } operations.append(operation) return {"jobs": jobs, "machines": list(machines), "operations": operations} file_path = './data/fjsp_example.csv' instance_data = load_fjsp_instance(file_path) print(instance_data) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曹筱习Dwayne

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值