探索3D数学的奥秘:《3D数学基础:图形与游戏开发》资源推荐
项目介绍
《3D数学基础:图形与游戏开发》是一本专为电脑游戏开发人员和3D图形编程人员设计的权威教材。本书深入浅出地介绍了3D数学的基本概念,并通过丰富的数学理论和几何说明,帮助读者建立起直观的3D空间感。书中不仅涵盖了向量、坐标空间、矩阵、变换等基础知识,还详细讲解了欧拉角、齐次坐标空间、几何图元、相交性检测以及三角网格等高级主题。此外,本书还提供了丰富的C++源码和练习题,帮助读者将理论知识应用于实际编程中。
项目技术分析
本书的核心技术点包括:
-
向量与坐标空间:向量是3D数学的基础,本书详细介绍了向量的基本概念及其在3D空间中的应用。坐标空间部分则讨论了不同坐标系统的转换方法,为后续的矩阵和变换打下基础。
-
矩阵与变换:矩阵是3D图形处理中的核心工具,本书详细讲解了矩阵的基本运算及其在平移、旋转、缩放等变换中的应用。通过这些内容,读者可以掌握如何通过矩阵操作来实现复杂的3D变换。
-
欧拉角与齐次坐标空间:欧拉角是描述3D旋转的常用方法,本书解释了欧拉角的定义及其在实际应用中的优缺点。齐次坐标空间则是3D图形处理中的重要概念,本书讨论了其在3D图形中的应用。
-
几何图元与相交性检测:几何图元是构建3D模型的基本元素,本书介绍了点、线、面等基本几何图元的概念及其在3D图形中的表示。相交性检测部分则讲解了不同几何图元之间的相交性检测方法,为碰撞检测等实际应用提供了理论支持。
-
三角网格:三角网格是3D模型的基本构建单元,本书讨论了三角网格的构建及其在3D模型中的应用,帮助读者理解如何通过三角网格来表示复杂的3D模型。
项目及技术应用场景
本书及其提供的资源适用于以下应用场景:
-
电脑游戏开发:游戏开发中需要处理大量的3D图形和物理计算,本书提供的3D数学基础知识是游戏开发人员必备的技能。通过学习本书,开发者可以更好地理解和实现游戏中的3D效果和物理模拟。
-
3D图形编程:无论是开发3D建模软件还是进行3D渲染,3D数学都是不可或缺的基础。本书详细讲解了3D图形处理中的核心概念和方法,帮助编程人员掌握3D图形编程的关键技术。
-
学术研究:对于从事计算机图形学、虚拟现实等领域的研究人员和学生来说,本书提供了系统的3D数学知识,有助于深入理解相关领域的理论基础。
项目特点
-
系统性:本书从基础的向量和坐标空间开始,逐步深入到矩阵、变换、欧拉角、齐次坐标空间等高级主题,形成了一个完整的3D数学知识体系。
-
实用性:书中不仅提供了丰富的数学理论,还通过C++源码和练习题,帮助读者将理论知识应用于实际编程中,增强了学习的实用性。
-
多语言支持:本书提供了中英文双语版本,方便不同语言背景的读者学习,扩大了受众范围。
-
丰富的资源:除了电子书和源码外,本书还提供了每章结尾的练习题,帮助读者巩固所学知识,提升实际应用能力。
通过《3D数学基础:图形与游戏开发》,你将掌握3D数学的核心概念和应用技巧,为在图形与游戏开发领域的进一步发展打下坚实的基础。无论你是初学者还是有一定经验的开发者,本书都将为你提供宝贵的知识和资源。