客户又来妖娥子了,今天一上班就给我发来了邮件,说要为他的shopify系统开发一个功能:为店铺启用自动化产品推荐。
如果不是我这10年的开发经验,加上系统地学习了shopify的二次开发,恐怕今天又要交待在这里了。
说起我的shopify二次开发学习之路,还真是坎坷。直到,我接触了一本书,从此打通了shopify二次开发的任督二脉,在shopify开发的道路上一发不可收拾。无论客户是来自美国、日本、加拿大,对于我来说,全部一把梭。
本着独乐乐不如众乐乐的精神,我也把这个秘籍分享给你们了,相信聪明如你,一定知道怎么到达我们的快乐星球吧?看下面!!!
引言
在现代电商竞争环境中,自动化产品推荐系统能够根据用户的兴趣和购买行为提供个性化的推荐列表。这种智能化推荐不仅有助于提高顾客满意度,还能提升销量和用户黏性。对于Shopify店铺的经营者,自动化推荐系统已成为提升店铺竞争力的关键工具之一。
一、Shopify平台上的自动化推荐解决方案
1. Shopify内置推荐功能
Shopify提供了一些基础的推荐功能模块,如“最近查看的商品”和“热销商品”。尽管这些功能基础,但它们为初学者提供了一个自动化推荐系统的入门路径。这些推荐模块通常无需安装额外的插件,适合一些小型店铺或对推荐需求简单的店铺使用。
要在Shopify中启用基本的推荐模块,可以使用Shopify主题中的Liquid代码。以下是一个简单的代码示例,显示最近查看的商品:
{% if customer %}
<div class="recently-viewed-products">
<h2>最近查看的商品</h2>
{% for product in customer.recently_viewed_products %}
<div class="product">
<a href="{{ product.url }}">
<img src="{{ product.featured_image | img_url: 'medium' }}" alt="{{ product.title }}">
<p>{{ product.title }}</p>
<p>{{ product.price | money }}</p>
</a>
</div>
{% endfor %}
</div>
{% endif %}
2. 使用第三方推荐应用
为了实现更精准的推荐,可以在Shopify App Store中找到多款自动化推荐应用,如Nosto、Personalizer by Yotpo、LimeSpot等。这些应用通常基于机器学习和数据分析技术,可以生成更个性化的推荐列表。
示例应用:LimeSpot
LimeSpot是一款常用的推荐应用,可以通过智能算法识别顾客兴趣,推荐相关产品。LimeSpot的优势在于能够自动生成“用户还购买了”或“可能喜欢”之类的推荐,安装过程较为简便。
安装步骤:
- 在Shopify App Store中搜索并安装LimeSpot。
- 授权LimeSpot访问商店数据(如商品信息、订单数据等),然后完成应用设置。
- 配置推荐逻辑,例如是否基于浏览历史、购买历史或是社交分享数据生成推荐。
- 将推荐模块添加到产品页面、购物车页面等。
二、部署自动化推荐系统的步骤
1. 需求分析
不同的目标对应不同的推荐策略。例如:
- 提升销售额:可以增加交叉销售和上行销售的推荐。
- 提高客户粘性:可以通过个性化推荐增加顾客的再次访问率。
了解你的受众需求和偏好非常重要,这些可以帮助你在推荐系统的初期配置中更精准地设定推荐参数。
2. 选择合适的推荐引擎
在选择推荐引擎时,需要考虑以下几个方面:
- 功能:不同的推荐引擎支持的功能差异较大。例如,Nosto专注于个性化营销,而LimeSpot可以配置多种类型的推荐模块。
- 价格:应用的价格从免费到收费不等,选择时应根据业务预算合理控制。
- 技术支持:有些应用提供专门的技术支持和培训,便于快速上手。
- 自定义开发:对于具有开发能力的团队,选择支持API的应用便于深度定制推荐逻辑。
3. 集成与配置
集成推荐应用后,通常需要进行基本配置,例如调整推荐模块在页面中的展示位置,或是个性化推荐策略。
以下是一些推荐的配置步骤,以Nosto为例:
- 安装Nosto:在Shopify App Store中找到Nosto并安装。
- 设置推荐规则:在Nosto的控制面板中,配置推荐策略,例如基于购买历史或用户行为进行推荐。
- 添加自定义代码:根据需要,可以将Nosto提供的JavaScript代码嵌入到Shopify的页面模板中,以实现更加灵活的展示效果。
<!-- 在产品页面中显示推荐产品 -->
<div id="product-recommendations">
<script>
// Nosto的推荐代码示例
_nq.push(["init", { user_id: "{{ customer.id }}" }]);
_nq.push(["recommend", {
placement: "product_page",
target: "product-recommendations",
item: "{{ product.id }}"
}]);
</script>
</div>
4. 测试与优化
部署完成后,需要进行多种测试,以确保推荐功能能够正常工作。推荐的测试步骤包括:
- 功能测试:测试每个推荐模块的展示和跳转链接。
- 性能测试:关注推荐系统对页面加载速度的影响。
- 数据反馈:定期监控推荐效果的数据指标,如点击率、转化率等。
使用A/B测试可以帮助你评估不同推荐策略的效果,以下是一个使用Liquid代码实现A/B测试的示例:
{% assign random_number = "now" | date: "%s" | modulo: 2 %}
{% if random_number == 0 %}
<!-- 推荐方案A -->
<h2>你可能还喜欢</h2>
{% for product in collections.featured.products limit: 4 %}
{{ product.title }}
{% endfor %}
{% else %}
<!-- 推荐方案B -->
<h2>推荐给你的热门商品</h2>
{% for product in collections.top_sellers.products limit: 4 %}
{{ product.title }}
{% endfor %}
{% endif %}
通过这种方式,可以测试推荐方案A与方案B的表现,选择表现更好的方案应用于店铺。
三、优化推荐系统的最佳实践
1. 数据驱动的决策
分析推荐系统的表现是优化的关键。Shopify中的内置数据分析工具以及推荐应用自带的统计功能,可以帮助你了解顾客的浏览和购买习惯。定期调整推荐策略,确保系统能够适应季节性需求和顾客偏好变化。
2. 动态更新与多样化展示
避免重复展示相同的推荐产品,可以提高用户体验。例如,每隔一段时间更新推荐算法或增加新的推荐逻辑,可以使推荐内容更加多样化。
3. 跨设备与跨渠道优化
确保推荐系统在不同设备(PC、手机、平板)上展示效果一致,适配响应式设计。另外,如果你的Shopify店铺和社交平台、邮件营销等渠道有整合,也可以扩展推荐系统到这些渠道,以实现全方位的推荐覆盖。
4. 优化SEO与内容个性化
自动化推荐系统不仅是一个提升销售的工具,也是一个提升SEO的利器。通过分析客户的行为数据,不仅可以优化推荐内容,还可以根据关键词对推荐内容进行定向优化,吸引更多流量。
自动化推荐系统在Shopify平台上的应用能够帮助商家更好地理解用户需求、提供个性化服务,并在提升销售额和用户体验方面发挥重要作用。无论你是通过Shopify内置功能、第三方应用,还是自定义开发,都可以根据自己的需求和能力逐步实现和优化推荐系统。