Python爬取百度百科页面数据

Python爬取百度百科页面数据我将他分为五部分:主函数部分、URL管理器部分、网页下载器部分、网页解析器部分和输出部分,以下是代码:

主函数部分spider_main.py

# coding=UTF-8
'''
Created on 2017年4月4日
@author: zwl
'''
from baike_spider import url_manager, html_downloader, html_parser,\
    html_outputer




class SpiderMain(object):
    def __init__(self):
        self.urls = url_manager.UrlManager()
        self.downloader = html_downloader.HtmlDownloader()
        self.parser = html_parser.HtmlParser()
        self.outputer = html_outputer.HtmlOutputer()
    
    def craw(self, root_url):
        count = 1
        self.urls.add_new_url(root_url)
        while self.urls.has_new_url():
            try:
                new_url = self.urls.get_new_url()
                print 'craw %d : %s' %(count, new_url)
                html_cont = self.downloader.download(new_url)
                new_urls, new_data = self.parser.parse(new_url, html_cont)
                self.urls.add_new_urls(new_urls)
                self.outputer.collect_data(new_data)
                
                if count == 1000: 
                    break
                    
                count = count + 1
            except:
                print 'craw faild'    
        self.outputer.output_html()    




if __name__=="__main__":
    root_url = "http://baike.baidu.com/item/Python?sefr=cr"
    obj_spider = SpiderMain()
    obj_spider.craw(root_url)
    
    

URL管理器部分url_manager.py
   # coding=UTF-8
'''
Created on 2017年4月4日


@author: zwl
'''


class UrlManager(object):
    def __init__(self):
        self.new_urls = set()
        self.old_urls = set()
    
    def add_new_url(self, url):
        if url is None:
            return
        if url not in self.new_urls and url not in self.old_urls:
            self.new_urls.add(url)
    
    def has_new_url(self):
        return len(self.new_urls) != 0


    
    def get_new_url(self):
        new_url = self.new_urls.pop()
        self.old_urls.add(new_url)
        return new_url


    
    def add_new_urls(self, urls):
        if urls is None or len(urls) == 0:
            return
        for url in urls:
            self.add_new_url(url)
    

网页下载器部分html_downloader.py
   # coding=UTF-8
'''
Created on 2017年4月4日


@author: zwl
'''
import urllib2




class HtmlDownloader(object):
    
    
    def download(self, url):
        if url is None:
            return None
        
        response = urllib2.urlopen(url);
        if response.getcode() != 200 :
            return None
        return response.read()
    
    网页解析器部分html_parser.py

# coding=UTF-8
'''
Created on 2017年4月4日

@author: zwl
'''
from bs4 import BeautifulSoup
import re
import urlparse

class HtmlParser(object):
    
    
    def _get_new_urls(self, page_url, soup):
        new_urls = set()
        links = soup.find_all('a', href=re.compile(r"/view/\d+\.htm"))
        for link in links:
            new_url = link['href']
            new_full_url = urlparse.urljoin(page_url, new_url)
            new_urls.add(new_full_url)
        return new_urls
    
    def _get_new_data(self, page_url, soup):
        res_data = {}
        res_data['url'] = page_url
        #<dd class="lemmaWgt-lemmaTitle-title"> <h1>Python</h1>
        title_node = soup.find('dd', class_="lemmaWgt-lemmaTitle-title").find("h1")
        res_data['title'] = title_node.get_text()
        #<div class="lemma-summary" label-module="lemmaSummary">
        summary_node = soup.find('div', class_="lemma-summary")
        res_data['summary'] = summary_node.get_text()
        
    
    def parse(self, page_url, html_cont):
        if page_url is None or html_cont is None:
            return 
        
        soup = BeautifulSoup(html_cont,'html.parser',from_encoding='utf-8')
        new_urls = self._get_new_urls(page_url, soup)
        new_data = self._get_new_data(page_url, soup)
        return new_urls,new_data
    

输出部分html_outputer.py

# coding=UTF-8
'''
Created on 2017年4月4日


@author: zwl
'''




class HtmlOutputer(object):
    def __init__(self):
        self.datas = []
    
    def collect_data(self, data):
        if data is None:
            return
        self.datas.append(data)


    
    def output_html(self):
        fout = open('output.html', 'w')
        fout.write("<html>")
        fout.write("<body>")
        fout.write("<table>")
        for data in self.datas:
            fout.write("<tr>")
            fout.write("<td>%s</td>"%data['url'])
            fout.write("<td>%s</td>"%data['title'].encode('utf-8'))
            fout.write("<td>%s</td>"%data['summary'].encode('utf-8'))
            fout.write("</tr>")
        fout.write("</table>")
        fout.write("</body>")
        fout.write("</html>")
        fout.close()
    
    
    
    















 
    
    
    
    
    
    





 
    

### 回答1: Python 是一种强大的编程语言,可以用来爬取网页数据并进行数据处理。本文将介绍如何使用 Python 爬取百度百科数据并构建三元组。 首先,我们需要安装 Python 的爬虫库 BeautifulSoup 和 requests。可以使用以下命令来安装这两个库: ```python pip install BeautifulSoup requests ``` 接下来,我们需要使用 requests 库发送 HTTP 请求,并使用 BeautifulSoup 库解析 HTML 页面。以下是一个简单的示例代码: ```python import requests from bs4 import BeautifulSoup url = 'https://baike.baidu.com/item/Python/407313' # 发送 HTTP 请求并获取网页内容 response = requests.get(url) content = response.text # 使用 BeautifulSoup 解析网页内容 soup = BeautifulSoup(content, 'html.parser') # 定位到百度百科词条正文内容 content_div = soup.find('div', {'class': 'lemma-summary'}) paragraphs = content_div.find_all('div', {'class': 'para'}) # 构建三元组 triples = [] for para in paragraphs: subject = 'Python' predicate = '介绍' object = para.text.strip() triple = (subject, predicate, object) triples.append(triple) # 打印三元组 for triple in triples: print(triple) ``` 在上述代码中,我们首先指定要爬取百度百科页面的 URL,并使用 requests 库发送 HTTP 请求获取网页内容。然后,我们使用 BeautifulSoup 库解析网页内容,并找到百度百科词条的正文内容。最后,我们遍历每个正文内容段落,构建三元组,并打印出来。 以上就是使用 Python 爬取百度百科数据构建三元组的简单示例。希望对你有帮助! ### 回答2: Python爬虫是一种通过代码自动化访问网页并提取信息的技术。在这个任务中,我们可以使用Python编写爬虫代码,从百度百科网页上提取数据并构建三元组。 首先,我们需要导入必要的Python库,例如requests和BeautifulSoup。使用requests库可以发送HTTP请求获取网页的源代码,而BeautifulSoup库可以方便地解析和提取网页中的数据。 接下来,我们可以使用requests库发送GET请求,将百度百科的URL作为参数传递给requests库。通过访问URL并获取到的网页源代码,我们可以使用BeautifulSoup库解析网页数据。 在百度百科网页中,通常会包含实体名称、实体定义和相关信息等内容。我们可以使用BeautifulSoup库根据HTML标签的属性和类名来定位到相关的标签位置,并提取所需的数据。 例如,如果我们想要构建一个以"实体名称-实体定义-相关信息"为三元组的数据结构,我们可以使用BeautifulSoup库定位到实体名称、实体定义和相关信息所对应的HTML标签,并将它们的内容提取出来。 最后,我们可以将提取到的数据保存到相应的数据结构中,例如列表和字典中,或者将其写入到文件中,以便后续的数据处理和分析。 总结起来,使用Python爬虫技术,我们可以很方便地从百度百科网页上提取数据并构建三元组。这个过程主要包括发送HTTP请求、解析网页数据,并将所需的数据提取并保存到相应的数据结构中。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值