代码随想录算法训练营Day35|K次取反后最大化的数组和、134.加油站、135.分发糖果

K次取反后最大化的数组和

1005. K 次取反后最大化的数组和 - 力扣(LeetCode)

贪心算法,将所有的负值取反后,若剩余k为偶数,则不变,得到的为最大值,若为奇数,则将取反后数组中最小的元素取反,计算得到最大值。

这里使用了两次排序,第一次排序后将小于等于k次数的负数取反,得到数组中所有值求绝对值的和,之后再排一次序,则数组第一个元素为最小的元素,此时若剩余的k为奇数,则和减去2倍该元素,并返回和,否则直接返回和。

class Solution {
public:
    int largestSumAfterKNegations(vector<int>& nums, int k) {
        // 首先,对数组进行排序,以便于从最大的负数开始进行处理。
        sort(nums.begin(), nums.end());
        int sum = 0;
        for (int i = 0; i < nums.size(); i++) {
            // 如果当前数字是负数,且我们还有可用的反转次数(k>0),
            // 那么将这个负数变为正数,并更新总和和反转次数。
            if (nums[i] < 0 && k > 0) {
                nums[i] *= -1;
                sum += nums[i];
                k--;
            } else {
                // 如果当前数字是非负数,或者没有剩余的反转次数,
                // 直接将这个数字加到总和上。
                sum += nums[i];
            }
        }

        // 再次对数组进行排序,方便找到最小的数
        sort(nums.begin(), nums.end());
        // 如果剩余的反转次数是偶数,那么可以忽略不计,因为偶数次反转不会改变数组的和。
        // 如果剩余的反转次数是奇数,那么需要将最小的数字(现在是正数)变为负数,
        // 因为这将是最小的损失。由于之前已经对数组进行了排序,最小的数字是nums[0]。
        if (k % 2 == 0) {
            return sum;
        } else {
            // 由于最小的数字被反转了一次,所以需要从总和中减去两倍的这个最小数字。
            return sum - 2 * nums[0];
        }
    }
};

算法的时间复杂度为O(nlogn),遍历一次数组,两次排序,综合为O(nlogn)。

空间复杂度为O(1)。

加油站

134. 加油站 - 力扣(LeetCode)

暴力法

        对每个站点,都模拟一次,是否能跑回初始点,算法的时间复杂度为O(n^2)。模拟转圈的过程用while比较好,但暴力解法会超时,具体代码如下。

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int count = gas.size();  // 获取加油站的数量
        for(int i = 0; i < count; i++){  // 遍历每个加油站作为起始点
            int start = i;  // 起始加油站
            int cur = i;  // 当前加油站
            int cur_gas = gas[start];  // 当前油箱中的汽油量
            while(cur_gas!=0){  // 当油箱中还有汽油时
                cur_gas -= cost[cur];  // 从当前油箱中减去到下一个加油站所需的汽油
                if(cur_gas<0)  // 如果油量小于0,说明无法到达下一个加油站
                    break;  // 退出循环
                cur = (cur + 1) % count;  // 移动到下一个加油站
                cur_gas += gas[cur];  // 加上下一个加油站的汽油量
                if(cur == start){  // 如果回到起始加油站
                    return start;  // 返回起始加油站的位置
                }
            }
        }
        return -1;  // 如果没有找到合适的起始加油站,返回-1
    }
};

算法时间复杂度O(n^2),空间复杂度为O(1)。

贪心算法

每到一个站点,都有消耗和补充,根据每个站点的gas和cost数组相减能得到一个数组,代表经过该站点的消耗或补充,若想要能够走完一圈,则消耗需小于等于补充,具体参考代码随想录视频。

贪心算法,得这么加油才能跑完全程!LeetCode :134.加油站_哔哩哔哩_bilibili
 

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int n = gas.size();  // 获取加油站的数量
        int totalGas = 0, currentGas = 0, start = 0;  // 定义总汽油量、当前汽油量和起始加油站

        for (int i = 0; i < n; ++i) {  // 遍历每个加油站
            totalGas += gas[i] - cost[i];  // 计算总汽油量(所有加油站的汽油量减去消耗量)
            currentGas += gas[i] - cost[i];  // 计算当前汽油量(从起始站到当前站的净汽油量)

            if (currentGas < 0) {  // 如果当前汽油量不足以到达下一个加油站
                currentGas = 0;  // 重置当前汽油量为0
                start = i + 1;  // 更新起始加油站为下一个加油站
            }
        }

        return totalGas >= 0 ? start : -1;  // 如果总汽油量大于等于0,返回起始加油站,否则返回-1
    }
};


算法的时间复杂度为O(n),空间复杂度为O(1)。

分发糖果

135. 分发糖果 - 力扣(LeetCode)       

        分发糖果由于若一个分数大于两侧的分数,则它得到的糖果数一定要是这3人中最多的,所以有两个方向需要考虑,贪心也就是考虑在这两个方向上,由于一次考虑两个方向同时考虑很难做,所以简化为考虑两次。

        考虑先创建一个长度为ratings的全为1的数组candy_distribution,表示分发的糖果数目,之后考虑先从左开始,根据题意,若当前元素大于前一个元素,则当前位置的分发糖果数目为前一个位置分发数目+1,经过一次循环后,在单方向上,得到了符合分发糖果的最少且都满足要求的糖果分发数组。之后再遍历一次,从右向左,判断当前元素是否大于后一个元素,且在糖果分发数组中,当前元素小于或等于后一个元素,若是,则将糖果分发数组当前元素 = 糖果分发数组后方元素 +1,即在两个方向上都完成了要求,此时分发的糖果总数也是最少的。

class Solution {
public:
    int candy(vector<int>& ratings) {
        // 创建一个与ratings同大小的数组candy_distribution,用于存储每个孩子应得的糖果数。
        // 初始化所有孩子的糖果数为1,因为每个孩子至少得到一颗糖果。
        vector<int> candy_distribution(ratings.size(), 1);

        // 从左到右遍历孩子,确保评分更高的孩子得到更多的糖果。
        for (int i = 1; i < ratings.size(); i++) {
            if (ratings[i] > ratings[i - 1]) {
                // 如果当前孩子的评分比前一个孩子高,那么他应该得到比前一个孩子多一颗糖果。
                candy_distribution[i] = candy_distribution[i - 1] + 1;
            }
        }

        // 从右到左遍历孩子,确保评分更高的孩子得到更多的糖果。
        for (int i = ratings.size() - 2; i >= 0; i--) {
            if (ratings[i] > ratings[i + 1] && candy_distribution[i] <= candy_distribution[i + 1]) {
                // 如果当前孩子的评分比后一个孩子高,并且当前孩子的糖果数不大于后一个孩子的糖果数,
                // 那么当前孩子应该得到比后一个孩子多一颗糖果。
                candy_distribution[i] = candy_distribution[i + 1] + 1;
            }
        }

        // 使用accumulate函数计算所有孩子糖果数的总和,这就是最少需要的糖果数。
        return accumulate(candy_distribution.begin(), candy_distribution.end(), 0);
    }
};

算法的时间复杂度为O(n),两次遍历,一次求和(所以是三次遍历)。

空间复杂度O(n),维护一个数组用于保存分发的糖果数目。

### 代码随想录算法训练营 Day20 学习内容与作业 #### 动态规划专题深入探讨 动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法[^1]。 #### 主要学习内容 - **背包问题系列** - 背包问题是典型的动态规划应用场景之一。这类题目通常涉及给定容量的背包以及一系列具有不同价值重量的物品,目标是在不超过总容量的情况下最大化所选物品的价值。 - **状态转移方程构建技巧** - 构建合适的状态转移方程对于解决动态规划问题是至关重要的。这涉及到定义好dp数组(或表格),并找到从前一个状态到下一个状态之间的关系表达式[^2]。 - **优化空间复杂度方法** - 对于某些特定类型的DP问题,可以采用滚动数组等方式来减少所需的空间开销,从而提高程序效率[^3]。 #### 实战练习题解析 ##### 题目:零钱兑换 (Coin Change) 描述:给定不同面额的硬币 coins 一个总金额 amount。编写函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 `-1`。 解决方案: ```python def coinChange(coins, amount): dp = [float('inf')] * (amount + 1) dp[0] = 0 for i in range(1, amount + 1): for coin in coins: if i >= coin and dp[i - coin] != float('inf'): dp[i] = min(dp[i], dp[i - coin] + 1) return dp[-1] if dp[-1] != float('inf') else -1 ``` 此段代码实现了基于自底向上的迭代方式解决问题,其中 `dp[i]` 表示达到金额 `i` 所需最小数量的硬币数目[^4]。 ##### 题目:完全平方数 (Perfect Squares) 描述:给出正整数 n ,找出若干个不同的 完全平方数 (比如 1, 4, 9 ...)使得它们的等于n 。问至少需要几个这样的完全平方数? 解答思路同上一题类似,只是这里的“硬币”变成了各个可能的完全平方数值。 ```python import math def numSquares(n): square_nums = set([i*i for i in range(int(math.sqrt(n))+1)]) dp = [float('inf')] *(n+1) dp[0] = 0 for i in range(1,n+1): for sq in square_nums: if i>=sq: dp[i]=min(dp[i],dp[i-sq]+1); return dp[n]; ``` 这段代码同样运用了动态规划的思想去寻找最优解路径,并利用集合存储所有小于等于输入值的最大平方根内的平方数作为候选集[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值