1.字符串
2.LeetCode 相关题目
2.1_344反转字符串
2.1.1算法描述
使用双指针翻转字符串
可以与翻转链表进行对比学习
2.1.2 Python 代码实现
class Solution:
def reverseString(self, s: List[str]) -> None:
"""
Do not return anything, modify s in-place instead.
"""
i = 0
j = len(s)-1
while i<=j:
s[i],s[j] = s[j],s[i]
i+=1
j-=1
2.1.3 时空复杂度
时间复杂度:O(N)(O(N/2))
空间复杂度:O(1)
2.2_541反转字符串2
2.2.1 算法概述
因为一次处理 2*k 个元素,这个窗口大小是固定的,每次让 i 的起始位置从 i *2 k 开始
然后在选择 i~i+k 个元素进行反转。
与此同时如果剩余的子串元素 > i+k 则正常翻转,如果 < i+k 则剩下的子串元素全部反转
2.2.2 代码实现
1.C++ 代码实现
class Solution {
public:
void reverse(string &s,int left,int right){ // 这里传入引用,否则报错
while(left<right){
swap(s[left],s[right]);
left++;
right--;
}
}
string reverseStr(string s, int k) {
for(int i =0;i<s.size();i = i+2*k){ // i 指向每一次反转的起始位置
// 剩余的字符 > k 个,则反转 k 个
if(i+k<=s.size()){
reverse(s,i,i+k-1);
continue;
}
// 剩余的字符>k个,则剩下的全部反转
reverse(s,i,s.size()-1);
}
return s;
}
};
class Solution:
def reverseStr(self, s: str, k: int) -> str:
# 子字符串替换方法
def reverse_substring(text):
left,right = 0,len(text)-1
while left<right:
text[left],text[right] = text[right],text[left]
left+=1
right-=1
return text
res = list(s)
for cur in range(0,len(s),2*k):
# 在 python 中使用 list[0:999],如果 999 那最后返回到最后一个元素
res[cur:cur+k] = reverse_substring(res[cur:cur+k])
return ''.join(res)
2.2.3 时空复杂度
时间复杂度:O(N)
空间复杂度:O(1)
2.3_剑指Offer05.替换空格
2.3.1 算法描述
遇到空格之后将空格后的元素全部顺应向后移动,为 %20 留出空
不要忘记先将 list 的大小进行扩充,要不前面加了 %20 后会 index out of range
2.3.2 Python 代码实现
class Solution:
def replaceSpace(self, s: str) -> str:
s_list = list(s)
counter = s.count(' ')
s_list.extend(['']*2*counter) # 因为要移动 s_list 中元素的位置,所以重新对其计数
for i in range(len(s_list)):
if s_list[i] == ' ':
s_list[i] = '%'
s_list[i+3:] = s_list[i+1:]
s_list[i:i+3] = '%20'
return ''.join(s_list)
2.3.3 时空复杂度
时间复杂度:O(N)
空间复杂度:O(1)
2.3.4 扩展:extend 和 append 的区别
append() 将括号内的元素当做一个元素添加到 list
extend() 将括号内的元素先拆分再添加
2.3_151翻转字符串里的单词
2.3.1算法描述
这里一共分为三步:
2.翻转整句话
2.3.2Python 代码实现
class Solution:
#1.去除多余的空格
def trim_spaces(self,s):
n=len(s)
left=0
right=n-1
# 去除开头的空格
while left<=right and s[left]==' ':
left+=1
#去除结尾的空格
while left<=right and s[right]==' ':
right-=1
tmp=[]
# 去除单词之间多余的空格
while left<=right:
if s[left]!=' ': # 不是空格直接存入
tmp.append(s[left])
elif tmp[-1]!=' ':#如果当前单词是空格,但是它前面那个单词不是空格这个空格就可以保留
tmp.append(s[left])
left+=1
return tmp
#2.字母字母之间的翻转
def reverse_string(self,nums,left,right):
while left<right:
nums[left], nums[right]=nums[right],nums[left]
left+=1
right-=1
return None
#3.单词与单词之间的翻转
def reverse_each_word(self, nums):
start=0
end=0
n=len(nums)
while start<n:
while end<n and nums[end]!=' ':
end+=1
self.reverse_string(nums,start,end-1)
start=end+1
end+=1
return None
#4.翻转整个字符串
def reverseWords(self, s):
l = self.trim_spaces(s) # 删除多余空格
self.reverse_string( l, 0, len(l) - 1) # 单词之间的翻转
self.reverse_each_word(l) # 翻转单词内每一个字母
return ''.join(l)
2.4_151翻转字符串里的单词
2.4.1 算法描述
这个题中包含多个对字符串的操作
1.移除多余的空格:27T
2.单词之间翻转:344+541
3.单词内部字母翻转:344+541
2.4.2 Python 代码实现
class Solution:
# 1.去掉多余的单词
def trim_space(self,s):
n = len(s)
left = 0
right = n-1
# 去掉开头结尾的空格
while left<=right and s[left] == ' ':
left+=1
while left<=right and s[right]==' ':
right-=1
# 去掉中间的空格
tmp = []
while left<=right:
if s[left]!=' ': # 当前位置不是空格直接添加
tmp.append(s[left])
elif tmp[-1]!=' ': # 当前位置是空格,但是它前面不是空格就没事
tmp.append(s[left])
left+=1
return tmp
# 2.翻转操作:单词与单词翻转+单词内字母翻转
def reverse_string(self,tmp,left,right):
while left<=right:
tmp[left],tmp[right] = tmp[right],tmp[left]
left+=1
right-=1
return None
# 3.锁定一个单词+翻转单词内的每个字母
def reverse_each_word(self,tmp):
start = 0
end = 0
n = len(tmp)
while start<n:
while end<n and tmp[end]!=' ': # 每次将 start 固定,然后移动 end ,找到完整单词位置
end+=1
self.reverse_string(tmp,start,end-1)
start = end+1
end+=1
# 4.翻转整个字符串数组
def reverseWords(self, s: str) -> str:
tmp = self.trim_space(s) # 去掉多余的空格
self.reverse_string(tmp,0,len(tmp)-1) # 单词与单词之间的翻转
self.reverse_each_word(tmp) # 单词定位+单词内部字母之间的翻转
return ''.join(tmp)
2.4.3 时空复杂度
时间复杂度:O(N)
空间复杂度:O(N)
2.5_剑指Offer 58-2 左旋转字符串
2.5.1 算法描述
要想实现题的翻转要实现三步:
1.先将前 K 个字符串翻转
2.将后 K 个字符串翻转
3.整个字符串翻转
2.5.2 C++&Python 代码实现
class Solution {
public:
string reverseLeftWords(string s, int n) {
reverse(s.begin(),s.begin()+n);
reverse(s.begin()+n,s.end());
reverse(s.begin(),s.end());
return s;
}
};
易错点:
C++ 使用 while 循环会超时,只能用 reverse 方法进行翻转
class Solution:
def reverseLeftWords(self, s: str, n: int) -> str:
# 某个字字符串的翻转
def reverse_sub(sub_s,left,right):
while left<right:
sub_s[left],sub_s[right] = sub_s[right],sub_s[left]
left+=1
right-=1
s_list = list(s)
end = len(s)-1
reverse_sub(s_list,0,n-1)
reverse_sub(s_list,n,end)
reverse_sub(s_list,0,end)
return ''.join(s_list)
2.5.3 时空复杂度
时间复杂度:O(N)
空间复杂度:O(N)
python 的 string 不可变,需要开辟同样大小空间的 list 来修改
2.6_28实现strStr()
2.6.1算法描述
1.创建前缀表
i:指向新添加的元素
le:指向需要判断的元素
① s[le] == s[i]
prefix[i] = le++;
②s[le]!=s[i]
a.if le>0:
le = prefix[le-1] ; // 继续判断前一个元素
b.le<=0:
prefix[i] = 0;
le = 0;
2.移动前缀表
将第一个值设为 -1。最后一个字母的 prefix 值会直接被抛弃
3.KMP 核心算法
i :指向 haystack的指针
j:指向 patten 的指针
(1)字符正常不匹配时如何移动
a. prefix 的值不为 -1
先看 prefix 的值,将patten 的 p 指向 prefix 的 index
b.prefix 的值为 -1
将 -1 的虚拟位置移动到错误位置,即 patten 的 0 位置移动到 haystack 的后一个
(2)字符串完全匹配
i-j 就是匹配的位置。仅将 j 移动到最后一个元素 prefix 的下标,然后继续判断是否还有其余的字符串
4.为什么 KMP 算法可以这样移动
比如说 abaa 是 haystack ,abab 是 patten 。不断匹配发现 a-b 对应不上。按理来说 patten 指针应该回溯到 patten 的最初位置 a 再重头比较,但是公共前后缀的前面和后面是对称的,也可以理解为是等价的,判断结果也是等价的。所以 i 指针当前在第二个 b 和当前在第一个 b 的效果是等价的,所以可以将其移动到前面最长公共前后缀对应的位置。
2.6.2 C++ 代码实现
2.6.3 时空复杂度
时间复杂度:O(M) T 的长度
空间复杂度:O(N) P 的长度
2.7_459重复的子字符串
2.7.1 算法描述
这里需要判断另个东西:①是否有重复子字符串 ②如果有重复子字符串,那子字符串多长
上面的要求完全可以通过 KMP 的 prefix 数组实现,这个时候的 prefix 的计算是包含从头到尾每一个元素的(最后一个元素也一同被算上),下面数组长度为 len
①是否由重复子字符串构成
公式:len%(len-prefix[-1])==0 and prefix[-1]!=0
则代表可以被数组的子串整除
②重复的子字符串有多长
公式len-prefix[-1]
就可以算出长度
拿一个最简单的例子,其实任意一个例子都适用
abab 的 prefix ,len=4
a 0
ab 0
aba 1
abab 2
prefix = [0,0,1,2]
①判断是否由重复子字符串构成
4%(4-2)==0 由重复子字符串构成
②判断重复子字符串多长
4-2 = 2 重复子字符串长度为 2
2.7.2 C++ &Python 代码实现
1.C++ 代码实现
class Solution {
public:
bool repeatedSubstringPattern(string s) {
int le = 0;
int i = 1;
vector<int> prefix(s.size(),0);
// 得到前缀表
while(i<s.size()){
if(s[i]==s[le]){
le++;
prefix[i] = le;
i++;
}else{
if(le>0) le = prefix[le-1];
else{
prefix[i] = 0;
i++;
}
}
}
// 计算重复子串的长度
int n =s.size();
if(prefix[n-1]==0) return false;
else return n%(n-prefix[n-1])==0;
}
};
2.Python 代码实现
class Solution:
def repeatedSubstringPattern(self, s: str) -> bool:
n = len(s)
prefix = [0]*n
prefix[0]=0
le = 0
i= 1
while(i<n):
if s[le]==s[i]: # 新添加的元素和 len 匹配
le+=1
prefix[i] = le
i+=1
else:
if le>0:
le = prefix[le-1] # len 指向上一个子串的最长公共前后缀的最后一个位置
else:
prefix[i] = 0
i+=1
# 判断是否由重复元素组成
if n%(n-prefix[-1])==0 and prefix[-1]!=0:
return True
else:
return False
2.7.3 时空复杂度
时间复杂度:O(N)
空间复杂度:O(N)
3.扩展题型
3.1_5最长回文子串
3.1.1 算法描述–马拉车算法
具体实现
关键数组:
对于字符串 “abac”
关键数组解释:
// 1. 原:最长回文子串长度 2.扩:回文串的半径
p[i]
// 当前已知的最右回文边界,即所有已知回文子串中,扩展到最右边的那个位置
maxRight
// 当前已知的最右回文边界对应的中心
center
// 字符 i 关于中心 center 的镜像位置,计算方法为 center = (mirror+i)/2
mirror
// 最长回文子串在原字符串的起始位置
start = (i-maxLen)/2;
解释计算:
start = (i-maxLen)/2;
S1:对字符串进行扩展
因为回文子串字符个数为奇数和偶数时判断的方法不同,所以需要在中间插入 # 使得字符串变成奇数串
因为对于边界的判断比较特殊,所以给边界添加 dummy
S2:求 i 的回文长度
以 center 为中心的 maxRight 中,是对称的
情况1: mirror 的 p[i] 包在 maxRight 中
p[i] = p[mirror]
情况2: mirror 的 p[i] 不包在 maxRight 中
那么 i 和 mirror 对称,从 mirror-max_left 是回文的,max_right-i 也是回文的,超出 max_left 那段是否是回文不清楚
情况3: 需要继续判断
i 有可能比 mirror 的回文串更长,所以要基于 p[i] 继续判断回文长度
S3:更新 max_right 和 center 的值
3.1.2 C++ 代码实现
class Solution {
public:
string newString(const string& s){
string new_string = "";
for(int i = 0;i<s.size();i++){
new_string+="#";
new_string+=s[i];
}
new_string+="#";
return new_string;
}
string longestPalindrome(string s) {
string new_string = newString(s);
int n = new_string.size();
vector<int> p(n);
int center = 0;
int max_right = 0;
int max_len = 0;
int max_i = 0;
for(int i = 0;i<n;i++){
if(i<=max_right){
int mirror = 2*center - i;
p[i] = min(max_right-i,p[mirror]);
}
int left = i-p[i]-1;
int right = i+p[i]+1;
while(left>=0&&right<n){
if(new_string[left]==new_string[right]){
left--;
right++;
p[i]++;
} else break;
}
if(i+p[i]>max_right){
center = i;
max_right = i+p[i];
}
if(p[i]>max_len){
max_len = p[i];
max_i = i;
}
}
int start = (max_i-max_len)/2;
return s.substr(start,max_len);
}
};
3.1.3 时空复杂度
时间复杂度:O(N²)
空间复杂度O(N)
3.2_190. 颠倒二进制位
字符串+位运算
3.2.1 算法描述
这里和反转字符串的方法一样
Step1:分别有 left 和 right 两个指针
Step2: 判断 left 和 right 指向的位是 0 还是 1
Step3:将相应的位置进行设置 0 或者设置为 1
3.2.2 代码实现
class Solution {
public:
uint32_t reverseBits(uint32_t n) {
// 字符串反转
int left = 0;
int right = 31;
while(left<right){
// 判断 left 是 0 还是 1
uint32_t leftVal = n&(1<<left); // 判断是1还是 0
uint32_t rightVal = n&(1<<right);
// 交换
if(leftVal) n = (n|(1<<right));
else n = (n&~(1<<right));
if(rightVal) n = (n|(1<<left));
else n = (n&~(1<<left));
left++;
right--;
}
return n;
}
};
3.2.3 时空复杂度
时间复杂度:O(logn)
空间复杂度:O(1)
3.2.4 知识扩展:位运算
位运算
1.为什么使用位运算
使用位进行存储可以更加节省空间
2.有哪些位运算
3.相关操作
(1)二进制与十进制的转换(手写)
(2)查看 x 第 n 位是否为 1
x & (1<<n)
(3)将第 n 位设置为 1
x|(1<<n)
(4)将第 n 位设置为 0
x&~(1<<n)
(4)移位操作
3.3_7 整数反转
3.3.1 算法描述
整数反转和字符串反转不太一样,整数反转不需要两个指针,而是通过不断的向前 * 10 的方法将后面的数向前推
2.递归实现
以 321 为例
(1)递归顺序
我选择的是用后序遍历,后序遍历代表需要先处理 3 。因为这里有一个关键点为数字 1 需要乘几个 10 ,所以必须要先将 3 提取出来放在最后一位。
(2)参数及返回值
这里需要传入的参数是 step ,也就是递归了多少步,需要乘几个 10 ,使用全局变量的形式让 step 不断的叠加
当处理 1 时 1 需要得到 23 的值,所以需要不断的将后面处理的值向上 return
(3)结束条件
当只剩下一个个位数时就直接相加即可
(4)单层递归逻辑
如何得到最后一位 % 10
如何去掉最后一位 /10
如何判断是否越界:
这里判断越界时需要将 INT_MAX 和 INT_MIN 分别进行 /10 的操作,否则会报错
3.3.2 代码实现
1.非递归实现
class Solution {
public:
int reverse(int x) {
int res = 0; // 用于存放最后的结果
while(x!=0){
if(res<INT_MIN/10||res>INT_MAX/10) return 0;
int digit = x%10; // 得到最后一位
x/=10; // 下面需要切分的值
res = res*10+digit;
}
return res;
}
};
2.递归实现
递归实现没有办法判断 int 类型的范围
class Solution {
private:
int step = 1;
public:
// 进行符号标记
int base(int x){
if(x<10) return x;
int sums = reverse(x/10); // 先得到 1
// 将 x 的每一位逐渐分离出来
int cur = x%10; // 先将 3 进行分离
step*=10; // 进行了一次操作
// 反转后的范围进行判断
if(sums>INT_MAX) return 0;
else return sums+cur*step;
}
int reverse(int x) {
int sums = 0;
if(x>=0) sums = base(x);
else sums = base(-1*x)*-1;
return sums;
}
};
3.3.3 时空复杂度
时间复杂度:O(N)
时间复杂度:O(log |x|)。翻转的次数即 xx 十进制的位数。
空间复杂度:O(1)
3.4_8字符串转换整数 (atoi)
3.4.1_算法描述
这个题有几个关键点:
1.去掉前导空格
这个算法因为不需要对 s 进行改变所以直接将指针指向非空格部分就行
2.对于 int 范围的判断
3.4.2 代码实现
class Solution {
public:
int myAtoi(string s) {
int len = s.size();
// 去除前面的空格
int j = 0;
while(j<len){
if(s[j]!=' ') break; // 最后 j 指向第一个非空格字符
j++;
}
// 字符串中没有数字
if(j==len) return 0;
int sign = 1; // 判断符号
if(s[j]=='+') j++;
else if(s[j]=='-'){
sign = -1;
j++;
}
int res = 0;
// 开始判断数字
while(j<len){
char cur = s[j];
if(cur<'0'||cur>'9') break;
if(res>INT_MAX/10||(res==INT_MAX/10&&(cur-'0')>INT_MAX%10)) return INT_MAX;
if(res<INT_MIN/10||(res==INT_MIN/10&&(cur-'0')>-(INT_MIN%10))) return INT_MIN;
res=res*10+sign*(cur-'0');
j++;
}
return res;
}
};