4.字符串

本文详细介绍了字符串操作的多种方法,包括LeetCode中的反转字符串、字符串翻转子串、整数反转、ASCII转整数以及涉及字符串处理的题目。涉及Python实现和时空复杂度分析,同时探讨了字符串、数组和整数操作的技巧。
摘要由CSDN通过智能技术生成

1.字符串

2.LeetCode 相关题目

2.1_344反转字符串

LeetCode题目链接

2.1.1算法描述

使用双指针翻转字符串

可以与翻转链表进行对比学习

2.1.2 Python 代码实现

class Solution:
    def reverseString(self, s: List[str]) -> None:
        """
        Do not return anything, modify s in-place instead.
        """
        i = 0
        j = len(s)-1
        while i<=j:
            s[i],s[j] = s[j],s[i]
            i+=1
            j-=1

2.1.3 时空复杂度

时间复杂度:O(N)(O(N/2))

空间复杂度:O(1)

2.2_541反转字符串2

LeetCode题目链接

2.2.1 算法概述

因为一次处理 2*k 个元素,这个窗口大小是固定的,每次让 i 的起始位置从 i *2 k 开始

然后在选择 i~i+k 个元素进行反转。

与此同时如果剩余的子串元素 > i+k 则正常翻转,如果 < i+k 则剩下的子串元素全部反转

2.2.2 代码实现

1.C++ 代码实现

class Solution {
public:
    void reverse(string &s,int left,int right){ // 这里传入引用,否则报错
        while(left<right){
                swap(s[left],s[right]);
                left++;
                right--;
        }
    }
    string reverseStr(string s, int k) {
        for(int i =0;i<s.size();i = i+2*k){ // i 指向每一次反转的起始位置
            // 剩余的字符 > k 个,则反转 k 个
            if(i+k<=s.size()){
                reverse(s,i,i+k-1);
                continue;
            }
            // 剩余的字符>k个,则剩下的全部反转
            reverse(s,i,s.size()-1);
            
        }
        return s;
    }
};
class Solution:
    def reverseStr(self, s: str, k: int) -> str:
        # 子字符串替换方法
        def reverse_substring(text):
            left,right = 0,len(text)-1
            while left<right:
                text[left],text[right] = text[right],text[left]
                left+=1
                right-=1
            return text
        res = list(s)
        for cur in range(0,len(s),2*k):
            # 在 python 中使用 list[0:999],如果 999 那最后返回到最后一个元素
            res[cur:cur+k] = reverse_substring(res[cur:cur+k])
        return ''.join(res)

2.2.3 时空复杂度

时间复杂度:O(N)

空间复杂度:O(1)

2.3_剑指Offer05.替换空格

LeetCode题目链接

2.3.1 算法描述

遇到空格之后将空格后的元素全部顺应向后移动,为 %20 留出空

不要忘记先将 list 的大小进行扩充,要不前面加了 %20 后会 index out of range

2.3.2 Python 代码实现

class Solution:
    def replaceSpace(self, s: str) -> str:
        s_list = list(s)
        counter = s.count(' ')
        s_list.extend(['']*2*counter) # 因为要移动 s_list 中元素的位置,所以重新对其计数
        for i in range(len(s_list)):
            if s_list[i] == ' ':
                s_list[i] = '%'
                s_list[i+3:] = s_list[i+1:]
                s_list[i:i+3] = '%20'
        return ''.join(s_list)

2.3.3 时空复杂度

时间复杂度:O(N)

空间复杂度:O(1)

2.3.4 扩展:extend 和 append 的区别

参考文档

append() 将括号内的元素当做一个元素添加到 list

image-20210917232612397

extend() 将括号内的元素先拆分再添加

image-20210917232730275

2.3_151翻转字符串里的单词

2.3.1算法描述

这里一共分为三步:

1.移除多余的空格(数组移除元素)

2.翻转整句话

3.翻转每个子字符串中的内容

2.3.2Python 代码实现

class Solution:
    #1.去除多余的空格
    def trim_spaces(self,s):     
        n=len(s)
        left=0
        right=n-1
        # 去除开头的空格
        while left<=right and s[left]==' ':       
            left+=1
        #去除结尾的空格
        while left<=right and s[right]==' ':        
            right-=1
        tmp=[]
        # 去除单词之间多余的空格
        while left<=right:                                    
            if s[left]!=' ': # 不是空格直接存入
                tmp.append(s[left])
            elif tmp[-1]!=' ':#如果当前单词是空格,但是它前面那个单词不是空格这个空格就可以保留
                tmp.append(s[left])
            left+=1
        return tmp
    #2.字母字母之间的翻转
    def reverse_string(self,nums,left,right):
        while left<right:
            nums[left], nums[right]=nums[right],nums[left]
            left+=1
            right-=1
        return None
    #3.单词与单词之间的翻转
    def reverse_each_word(self, nums):
        start=0
        end=0
        n=len(nums)
        while start<n:
            while end<n and nums[end]!=' ':
                end+=1
            self.reverse_string(nums,start,end-1)
            start=end+1
            end+=1
        return None

    #4.翻转整个字符串
    def reverseWords(self, s):
        l = self.trim_spaces(s) # 删除多余空格                      
        self.reverse_string( l,  0, len(l) - 1) # 单词之间的翻转
        self.reverse_each_word(l)  # 翻转单词内每一个字母
        return ''.join(l)

2.4_151翻转字符串里的单词

力扣题目链接

2.4.1 算法描述

这个题中包含多个对字符串的操作

1.移除多余的空格:27T

2.单词之间翻转:344+541

3.单词内部字母翻转:344+541

2.4.2 Python 代码实现

class Solution:

  # 1.去掉多余的单词
  def trim_space(self,s):
    n = len(s)
    left = 0
    right = n-1
    # 去掉开头结尾的空格
    while left<=right and s[left] == ' ':
      left+=1
      while left<=right and s[right]==' ':
        right-=1
        # 去掉中间的空格
        tmp = []
        while left<=right:
          if s[left]!=' ': # 当前位置不是空格直接添加
            tmp.append(s[left])
            elif tmp[-1]!=' ': # 当前位置是空格,但是它前面不是空格就没事
              tmp.append(s[left])
              left+=1
              return tmp
            # 2.翻转操作:单词与单词翻转+单词内字母翻转
            def reverse_string(self,tmp,left,right):
              while left<=right:
                tmp[left],tmp[right] = tmp[right],tmp[left]
                left+=1
                right-=1
                return None
              # 3.锁定一个单词+翻转单词内的每个字母
              def reverse_each_word(self,tmp):
                start = 0
                end = 0
                n = len(tmp)
                while start<n:
                  while end<n and tmp[end]!=' ': # 每次将 start 固定,然后移动 end ,找到完整单词位置
                    end+=1
                    self.reverse_string(tmp,start,end-1)
                    start = end+1
                    end+=1
                    # 4.翻转整个字符串数组
                    def reverseWords(self, s: str) -> str:
                      tmp = self.trim_space(s) # 去掉多余的空格
                      self.reverse_string(tmp,0,len(tmp)-1) # 单词与单词之间的翻转
                      self.reverse_each_word(tmp) # 单词定位+单词内部字母之间的翻转
                      return ''.join(tmp)

2.4.3 时空复杂度

时间复杂度:O(N)

空间复杂度:O(N)

2.5_剑指Offer 58-2 左旋转字符串

2.5.1 算法描述

要想实现题的翻转要实现三步:

1.先将前 K 个字符串翻转

2.将后 K 个字符串翻转

3.整个字符串翻转

image-20210913230814563

2.5.2 C++&Python 代码实现

class Solution {
public:
    string reverseLeftWords(string s, int n) {
        reverse(s.begin(),s.begin()+n);
        reverse(s.begin()+n,s.end());
        reverse(s.begin(),s.end());
        return s;

    }
};

易错点:

C++ 使用 while 循环会超时,只能用 reverse 方法进行翻转

class Solution:
    def reverseLeftWords(self, s: str, n: int) -> str:
        # 某个字字符串的翻转
        def reverse_sub(sub_s,left,right):
            while left<right:
                sub_s[left],sub_s[right] = sub_s[right],sub_s[left]
                left+=1
                right-=1
        s_list = list(s)
        end = len(s)-1
        reverse_sub(s_list,0,n-1)
        reverse_sub(s_list,n,end)
        reverse_sub(s_list,0,end)
        return ''.join(s_list)

2.5.3 时空复杂度

时间复杂度:O(N)

空间复杂度:O(N)

python 的 string 不可变,需要开辟同样大小空间的 list 来修改

2.6_28实现strStr()

2.6.1算法描述

LeetCode 题目链接

B站 KMP 算法讲解

我的笔记

1.创建前缀表

i:指向新添加的元素

le:指向需要判断的元素

① s[le] == s[i]

prefix[i] = le++;

②s[le]!=s[i]

a.if le>0:

​ le = prefix[le-1] ; // 继续判断前一个元素

b.le<=0:

​ prefix[i] = 0;

​ le = 0;

2.移动前缀表

将第一个值设为 -1。最后一个字母的 prefix 值会直接被抛弃

3.KMP 核心算法

i :指向 haystack的指针

j:指向 patten 的指针

(1)字符正常不匹配时如何移动

a. prefix 的值不为 -1

​ 先看 prefix 的值,将patten 的 p 指向 prefix 的 index

b.prefix 的值为 -1

​ 将 -1 的虚拟位置移动到错误位置,即 patten 的 0 位置移动到 haystack 的后一个

(2)字符串完全匹配

i-j 就是匹配的位置。仅将 j 移动到最后一个元素 prefix 的下标,然后继续判断是否还有其余的字符串

4.为什么 KMP 算法可以这样移动

比如说 abaa 是 haystack ,abab 是 patten 。不断匹配发现 a-b 对应不上。按理来说 patten 指针应该回溯到 patten 的最初位置 a 再重头比较,但是公共前后缀的前面和后面是对称的,也可以理解为是等价的,判断结果也是等价的。所以 i 指针当前在第二个 b 和当前在第一个 b 的效果是等价的,所以可以将其移动到前面最长公共前后缀对应的位置。

2.6.2 C++ 代码实现

2.6.3 时空复杂度

时间复杂度:O(M) T 的长度

空间复杂度:O(N) P 的长度

2.7_459重复的子字符串

LeetCode题目链接

2.7.1 算法描述

这里需要判断另个东西:①是否有重复子字符串 ②如果有重复子字符串,那子字符串多长

上面的要求完全可以通过 KMP 的 prefix 数组实现,这个时候的 prefix 的计算是包含从头到尾每一个元素的(最后一个元素也一同被算上),下面数组长度为 len

①是否由重复子字符串构成

公式:len%(len-prefix[-1])==0 and prefix[-1]!=0 则代表可以被数组的子串整除

②重复的子字符串有多长

公式len-prefix[-1] 就可以算出长度

拿一个最简单的例子,其实任意一个例子都适用

abab 的 prefix ,len=4
a 0
ab 0
aba 1
abab 2
prefix = [0,0,1,2]

①判断是否由重复子字符串构成

4%(4-2)==0 由重复子字符串构成

②判断重复子字符串多长

4-2 = 2 重复子字符串长度为 2

2.7.2 C++ &Python 代码实现

1.C++ 代码实现

class Solution {
public:
    bool repeatedSubstringPattern(string s) {
        int le = 0;
        int i = 1;
        vector<int> prefix(s.size(),0);
        // 得到前缀表
        while(i<s.size()){
            if(s[i]==s[le]){
                le++;
                prefix[i] = le;
                i++;
            }else{
                if(le>0) le = prefix[le-1];
                else{
                    prefix[i] = 0;
                    i++;
                }
            }

        }
        // 计算重复子串的长度
        int n =s.size();
        if(prefix[n-1]==0) return false;
        else return n%(n-prefix[n-1])==0;
    }
};

2.Python 代码实现

class Solution:
    def repeatedSubstringPattern(self, s: str) -> bool:
        n = len(s)
        prefix = [0]*n
        prefix[0]=0
        le = 0
        i= 1
        while(i<n):
            if s[le]==s[i]: # 新添加的元素和 len 匹配
                le+=1
                prefix[i] = le
                i+=1
            else:
                if le>0:
                    le = prefix[le-1] # len 指向上一个子串的最长公共前后缀的最后一个位置
                else:
                    prefix[i] = 0
                    i+=1
        # 判断是否由重复元素组成
        if n%(n-prefix[-1])==0 and prefix[-1]!=0:
            return True
        else:
            return False

2.7.3 时空复杂度

时间复杂度:O(N)

空间复杂度:O(N)

3.扩展题型

3.1_5最长回文子串

3.1.1 算法描述–马拉车算法

具体实现
关键数组:
对于字符串 “abac”
关键数组解释:

// 1. 原:最长回文子串长度 2.扩:回文串的半径
p[i]
// 当前已知的最右回文边界,即所有已知回文子串中,扩展到最右边的那个位置
maxRight
// 当前已知的最右回文边界对应的中心
center
// 字符 i 关于中心 center 的镜像位置,计算方法为 center = (mirror+i)/2
mirror
// 最长回文子串在原字符串的起始位置
start = (i-maxLen)/2;

解释计算:

start = (i-maxLen)/2;

在这里插入图片描述

S1:对字符串进行扩展
因为回文子串字符个数为奇数和偶数时判断的方法不同,所以需要在中间插入 # 使得字符串变成奇数串
因为对于边界的判断比较特殊,所以给边界添加 dummy

S2:求 i 的回文长度
以 center 为中心的 maxRight 中,是对称的
情况1: mirror 的 p[i] 包在 maxRight 中
p[i] = p[mirror]
情况2: mirror 的 p[i] 不包在 maxRight 中
那么 i 和 mirror 对称,从 mirror-max_left 是回文的,max_right-i 也是回文的,超出 max_left 那段是否是回文不清楚
情况3: 需要继续判断
i 有可能比 mirror 的回文串更长,所以要基于 p[i] 继续判断回文长度

S3:更新 max_right 和 center 的值

3.1.2 C++ 代码实现

class Solution {
public:
    string newString(const string& s){
        string new_string = "";
        for(int i = 0;i<s.size();i++){
            new_string+="#";
            new_string+=s[i];
        }
        new_string+="#";
        return new_string;
    }
    string longestPalindrome(string s) {
        string new_string = newString(s);
        int n = new_string.size();
        vector<int> p(n);
        int center = 0;
        int max_right = 0;
        int max_len = 0;
        int max_i = 0;
        for(int i = 0;i<n;i++){
            if(i<=max_right){
                int mirror = 2*center - i;
                p[i] = min(max_right-i,p[mirror]);
            }
            int left = i-p[i]-1;
            int right = i+p[i]+1;
            while(left>=0&&right<n){
                if(new_string[left]==new_string[right]){
                    left--;
                    right++;
                    p[i]++;
                } else break;
            }
            
            if(i+p[i]>max_right){
                center = i;
                max_right = i+p[i];
            }
            if(p[i]>max_len){
                max_len = p[i];
                max_i = i;
            }

        }
        int start = (max_i-max_len)/2;
        return s.substr(start,max_len);

    }
};

3.1.3 时空复杂度

时间复杂度:O(N²)
空间复杂度O(N)

3.2_190. 颠倒二进制位

字符串+位运算

3.2.1 算法描述

这里和反转字符串的方法一样

Step1:分别有 left 和 right 两个指针

Step2: 判断 left 和 right 指向的位是 0 还是 1

Step3:将相应的位置进行设置 0 或者设置为 1

3.2.2 代码实现

class Solution {
  public:
  uint32_t reverseBits(uint32_t n) {
    // 字符串反转
    int left = 0;
    int right = 31;
    while(left<right){
      // 判断 left 是 0 还是 1 
      uint32_t leftVal = n&(1<<left); // 判断是1还是 0 
      uint32_t rightVal = n&(1<<right);
      // 交换
      if(leftVal) n = (n|(1<<right));
      else n = (n&~(1<<right));
      if(rightVal) n = (n|(1<<left));
      else n = (n&~(1<<left));
      left++;
      right--;
    }
    return n;
  }
};

3.2.3 时空复杂度

时间复杂度:O(logn)

空间复杂度:O(1)

3.2.4 知识扩展:位运算

位运算

1.为什么使用位运算

使用位进行存储可以更加节省空间

2.有哪些位运算

image-20220113115915935

3.相关操作

(1)二进制与十进制的转换(手写)

image-20220113120404526

(2)查看 x 第 n 位是否为 1

x & (1<<n)
image-20220113120535977

(3)将第 n 位设置为 1

x|(1<<n)
image-20220113120747089

(4)将第 n 位设置为 0

x&~(1<<n)
image-20220113124236834

(4)移位操作

image-20220113121909716

3.3_7 整数反转

3.3.1 算法描述

整数反转和字符串反转不太一样,整数反转不需要两个指针,而是通过不断的向前 * 10 的方法将后面的数向前推

2.递归实现

以 321 为例

(1)递归顺序

我选择的是用后序遍历,后序遍历代表需要先处理 3 。因为这里有一个关键点为数字 1 需要乘几个 10 ,所以必须要先将 3 提取出来放在最后一位。

(2)参数及返回值

这里需要传入的参数是 step ,也就是递归了多少步,需要乘几个 10 ,使用全局变量的形式让 step 不断的叠加

当处理 1 时 1 需要得到 23 的值,所以需要不断的将后面处理的值向上 return

(3)结束条件

当只剩下一个个位数时就直接相加即可

(4)单层递归逻辑

如何得到最后一位 % 10

如何去掉最后一位 /10

如何判断是否越界:

这里判断越界时需要将 INT_MAX 和 INT_MIN 分别进行 /10 的操作,否则会报错

3.3.2 代码实现

1.非递归实现

class Solution {
  public:
  int reverse(int x) {
    int res = 0; // 用于存放最后的结果
    while(x!=0){
      if(res<INT_MIN/10||res>INT_MAX/10) return 0;
      int digit = x%10; // 得到最后一位
      x/=10; // 下面需要切分的值
      res = res*10+digit;
    }
    return res;

  }
};

2.递归实现

递归实现没有办法判断 int 类型的范围

class Solution {
  private:
  int step = 1;
  public:
  // 进行符号标记
  int base(int x){
    if(x<10) return x;
    int sums = reverse(x/10); // 先得到 1 
    // 将 x 的每一位逐渐分离出来
    int cur = x%10; // 先将 3 进行分离
    step*=10; // 进行了一次操作
    // 反转后的范围进行判断
    if(sums>INT_MAX) return 0;
    else return sums+cur*step;
  }
  int reverse(int x) {
    int sums = 0;
    if(x>=0) sums = base(x);
    else sums = base(-1*x)*-1;
    return sums;
  }
};

3.3.3 时空复杂度

时间复杂度:O(N)

时间复杂度:O(log |x|)。翻转的次数即 xx 十进制的位数。

空间复杂度:O(1)

3.4_8字符串转换整数 (atoi)

3.4.1_算法描述

这个题有几个关键点:

1.去掉前导空格

这个算法因为不需要对 s 进行改变所以直接将指针指向非空格部分就行

2.对于 int 范围的判断

3.4.2 代码实现

class Solution {
  public:
  int myAtoi(string s) {
    int len = s.size();
    // 去除前面的空格
    int j = 0;
    while(j<len){
      if(s[j]!=' ') break; // 最后 j 指向第一个非空格字符
      j++;
    }
    // 字符串中没有数字
    if(j==len) return 0;

    int sign = 1; // 判断符号
    if(s[j]=='+') j++;
    else if(s[j]=='-'){
      sign = -1;
      j++;
    }
    int res = 0;
    // 开始判断数字
    while(j<len){
      char cur = s[j];
      if(cur<'0'||cur>'9') break;
      if(res>INT_MAX/10||(res==INT_MAX/10&&(cur-'0')>INT_MAX%10)) return INT_MAX;
      if(res<INT_MIN/10||(res==INT_MIN/10&&(cur-'0')>-(INT_MIN%10))) return INT_MIN;
      res=res*10+sign*(cur-'0');
      j++;
    }
    return res;
  }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值