以下笔记来自 B 站:https://www.bilibili.com/video/BV1bi4y1R7AC/?spm_id_from=333.337.search-card.all.click
1.概念
车辆动力学(vehicle kinematices)
运动学(kinematics):质点或刚体在运动空间中的集合描述,几何描述基于不同的参考系或者坐标系
动力学(kinetics/dynamics):造成运动的规律,比如说影响物体运动的力,F = ma
2.参考系
2.1 惯性参考系(inertial frame)
惯性参考系就是基于地球的参考系,在惯性参考系中牛顿定律适用(物体保持静止或者匀速运动),所以在惯性参考系中物体是没有加速度的,惯性参考系可看做大地坐标系
下图中 X Y 表示地面,Z表示垂直于地面的线
2.2 车辆参考系
车辆参考系以车辆重心为原点或者以车辆的后轴中心为原点,
x
v
x_v
xv 指向车辆前进的方向,
y
v
y_v
yv 指向车辆左侧方向,
z
v
z_v
zv 指向车辆顶部
惯性坐标系与车辆坐标系的关系为:
2.3 水平坐标系(horizontal frame)
水平坐标系是基于车辆坐标系的,垂直于地球重力方向,其中
x
x
x 为
x
v
x_v
xv 在水平坐标系的投影,
y
y
y 为
y
v
y_v
yv 在水平坐标系下的投影,
z
z
z 是垂直于水平坐标系的
2.4 路径坐标系
路径参考系是根据给定的路径为原点,
d
d
d 为路径的切线方向,
e
e
e 与
d
d
d 相切,
n
n
n 垂直于路面,路径参考线又是贴于路面
3.车辆动力学相关定义
wheelbase
l
l
l : 表示车前轴和后轴之间的距离
track
b
b
b:左右轮胎之间的距离
slope angle
λ
λ
λ:水平坐标系和路面在 x 轴的夹角,路面就是车辆真正行驶的路,水平面就是平着,没有任何角度的面
(紫色的线为 road plane,绿色的线为 horizantal plane)
bank angle
β
β
β : 水平平面与路面在 y 轴上的夹角
yaw angle
ψ
\psi
ψ:该角度是惯性坐标系下的
x
x
x 和水平坐标系中
x
x
x (车辆质心速度)之间的夹角,是车辆围绕
z
z
z 轴的旋转角度
航向角的范围是 (-π,π]
pitch angle
θ
θ
θ:是水平坐标系中的
x
x
x 和汽车坐标系中的
x
v
x_v
xv 之间的夹角,是车辆围绕
y
y
y 轴旋转的角度
roll angle
φ
φ
φ :是水平坐标系下 y 和车辆坐标系下
y
v
y_v
yv 之间的夹角,代表车辆基于 x 的旋转角度
4.刚体的运动
刚体(rigid body):是指由无限多个质量极小的点组成的物体,这些点之间是刚性连接的,即它们的相对位置随时间保持不变。虽然实际物体都会有一定的变形,但在很多情况下,可以近似认为它们是刚体,从而简化计算和分析过程。
刚体的运动表示:
下图为某个点P的运动学特性,
点P在时间
t
t
t 的位置由向量表示
r
⃗
p
(
t
)
=
[
x
(
t
)
y
(
t
)
z
(
t
)
]
\vec{r}_{p}(t)=\left[\begin{array}{l} x(t) \\ y(t) \\ z(t) \end{array}\right]
rp(t)=
x(t)y(t)z(t)
速度表示为:
V
⃗
p
=
r
⃗
˙
p
(
t
)
=
[
x
˙
(
t
)
y
˙
(
t
)
z
˙
(
t
)
]
\vec{V}_{p}=\dot{\vec{r}}_{p}(t)=\left[\begin{array}{l} \dot{x}(t) \\ \dot{y}(t) \\ \dot{z}(t) \end{array}\right]
Vp=r˙p(t)=
x˙(t)y˙(t)z˙(t)
4.1 刚体的运动
C 为参考点,白色的圈为刚体,P 为刚体上的一个点,根据刚体的特性,当刚体运动时,刚体上所有的点都围绕参考点进行旋转
P 点的向量表示为:
r
⃗
P
=
r
⃗
C
+
r
⃗
C
P
\vec{r}_{P}=\vec{r}_{C}+\vec{r}_{C P}
rP=rC+rCP
P 点的速度和加速度表示为:
v
⃗
p
=
v
⃗
c
+
ω
⃗
×
r
⃗
C
P
a
⃗
p
=
a
⃗
c
+
ω
⃗
˙
×
r
⃗
C
P
+
ω
⃗
×
(
ω
⃗
×
r
⃗
C
P
)
\begin{array}{l} \vec{v}_{p}=\vec{v}_{c}+\vec{\omega} \times \vec{r}_{CP} \\ \vec{a}_{p}=\vec{a}_{c}+\dot{\vec{\omega}} \times \vec{r}_{CP}+\vec{\omega} \times\left(\vec{\omega} \times \vec{r}_{CP}\right) \end{array}
vp=vc+ω×rCPap=ac+ω˙×rCP+ω×(ω×rCP)
4.2 瞬时旋转中心
在每个时刻
t
t
t 存在一个特殊的参考点
O
O
O (瞬时旋转中心),对于该点,刚体上各点
P
P
P 的速度可以描述为
v
⃗
P
=
v
⃗
O
+
ω
⃗
×
r
⃗
O
P
\vec{v}_{P} =\vec{v}_{O}+\vec{\omega} \times \vec{r}_{OP}
vP=vO+ω×rOP,此时
v
⃗
p
=
0
\vec{v}_{p}=0
vp=0,刚体的所有点相对于
O
O
O 做纯旋转
瞬时旋转中心可以存在于刚体内也可以存在于刚体外
4.2.1 旋转的轮胎
(1)情况1
当轮胎离开地面开始旋转,旋转中心为轮胎的中心,因为轮胎是向右旋转的,所以对于点
P
P
P 来说,有一个垂直于 OP 连线的速度向量指向右边,
v
⃗
P
=
ω
⃗
×
r
⃗
O
P
\vec{v}_{P} =\vec{\omega} \times \vec{r}_{OP}
vP=ω×rOP,OP连线上的其他点也有一条垂直于该连线的速度 v
(2)情况2
当轮胎贴近地面开始旋转,旋转中心为轮胎和地面接触的地方。同理,对于点
P
P
P 来说,有一个垂直于 OP 连线的速度向量指向右边,
v
⃗
P
=
ω
⃗
×
2
r
⃗
O
P
\vec{v}_{P} =\vec{\omega} \times 2\vec{r}_{OP}
vP=ω×2rOP,同理轮胎上的其他点
在这里插入图片描述
5.阿克曼(Ackermann)转向角
1.轮子转向角(wheel steer angle
δ
i
j
\delta_{ij}
δij )
转向角是车身方向与轮胎方向的夹角,即
x
v
x_v
xv 和
s
t
e
e
r
a
n
g
l
e
steer angle
steerangle
2侧滑角(slip angle
α
i
j
\alpha_{ij}
αij)
代表轮胎方向和轮胎实际运动方向的夹角,当路面湿滑或者雨雪天气就会造成轮胎方向和实际速度方向不一致问题
5.2 阿克曼转角介绍
所有可允许的(前轮)转向角的组合构成 Ackermann 转向几何
Ackermann 转向几何模型,该模型假设四个轮胎的侧滑角为零,
a
i
j
=
0
a_{ij} = 0
aij=0,以确保在车辆转弯时每个轮胎都沿着相同的旋转中心旋转
红色点 O:瞬时旋转中心(instantaneous center of rotation),是所有车轮绕其旋转的中心点。
黄色线:车轮与旋转中心的连线
绿色箭头:车轮的速度方向(wheel orientations)。黄色的线与绿色的线垂直
6.车辆转向系统
白色:前轴+左右轮
Steering Knuckles (转向节):红色部分,连接车轮和转向系统的组件,允许车轮在转向时转动。
King Pins (Knuckle Pivot Points) (主销,转向节枢轴点):黄色部分,转向节的枢轴点,使转向节和车轮能够绕此点转动。
Steering Pivots (转向枢轴):蓝色部分,连接转向系统和转向节的枢轴点,用于传递转向力。
Tie Rods (拉杆):紫色部分,连接转向节和转向系统的杆件,传递转向力和运动。
Rack & Pinion Unit (齿条和小齿轮单元):绿色部分,转向系统的核心组件,通过齿条和小齿轮的啮合来传递方向盘的转动,从而改变车轮的方向。
Steering Column with Steering Wheel (带方向盘的转向柱):橙色部分,驾驶员转动方向盘,通过转向柱将力传递给齿条和小齿轮单元。
6.自行车模型
6.1 静态自行车模型
将汽车模型转换为自行车模型
如下图所示:
O(红色):瞬时旋转中心,旋转中心的位置由两个轮胎基于速度的垂线的相交点决定
C(紫色):车辆参考点,这个点往往是车辆重心的位置,该点的位置可以不固定,位置不同时计算出的角度也有不同
l
f
+
l
r
=
l
l_{f}+l_{r} = l
lf+lr=l
v:参考点所在位置的速度,速度垂直于参考点于瞬时旋转中心向量连线
δ
\delta
δ : 前轮转向角
β
\beta
β:侧滑角
有关于速度的几个变量,具体公式可以见下图:
x
˙
(
t
)
=
v
cos
(
ψ
+
β
)
Y
˙
(
t
)
=
v
sin
(
ψ
+
β
)
ψ
˙
(
t
)
=
ω
=
v
R
\begin{array}{l} \dot{x}(t)=v \cos (\psi+\beta) \\ \dot{Y}(t)=v \sin (\psi+\beta) \\ \dot{\psi }(t)=\omega=\frac{v}{R} \end{array}
x˙(t)=vcos(ψ+β)Y˙(t)=vsin(ψ+β)ψ˙(t)=ω=Rv
6.2 相关速度计算
v x = w ∗ R a = w ∗ v x = v x ∗ ( v x / R ) R = v x ∗ ( v x / a ) L ( 弧长 ) = θ (弧度) × R v t = v 0 + a t v t 2 − v 0 2 = 2 a s s = v 0 t + 1 2 a t 2 \begin{array}{l} v_x = w*R \\ a = w*v_x = v_x * (v_x/R) \\ R = v_x * (v_x/a) \\ L(弧长) = \theta(弧度) \times R \\ vt=v_0+at \\ vt^2 - v_0^2= 2as \\ s = v_0t+\frac{1}{2} at^2 \\ \end{array} vx=w∗Ra=w∗vx=vx∗(vx/R)R=vx∗(vx/a)L(弧长)=θ(弧度)×Rvt=v0+atvt2−v02=2ass=v0t+21at2