机器学习
文章平均质量分 60
-ROOT-
糙学尝试
细琢实践
整理总结
扩展精通
展开
-
机器学习笔记---决策树
决策树原创 2017-05-25 18:40:58 · 720 阅读 · 0 评论 -
朴素贝叶斯
更好的阅读体验,点我移步到我的个人博客朴素贝叶斯贝叶斯定理设\( X \)是代表一条数据,由\( n \)个属性构成;\( H \)为某种假设,如数据\( X \)属于某个特定的类\( C \)。\( P(H|X)\) 是在已知\( X \)的几个属性下,\( X \)属于某个类\( C \)的概率。贝叶斯定理如下: P(H|X)=P(X|H)P(H)P(X) P(H|X) = \frac{P(原创 2017-06-01 15:22:06 · 493 阅读 · 0 评论 -
准确率(Accuracy) 精确率(Precision) 召回率(Recall)和F1-Measure
先验知识 我们首先将数据的类别统一分为两类:正类和负类。例如:一个数据集中的数据一共有3类,小学生、中学生、高中生。我们的目标是预测小学生,那么标记为小学生的数据就是正类,标记为其他类型的数据都是负类。 数据有两种状态:测试集数据和预测结果数据。 对一批测试数据进行预测,结果可以分成四种。TP(True Positive): 原本是正类,预测结果为正类。(正确预测为正类)...原创 2018-04-02 16:37:06 · 8148 阅读 · 2 评论