准确率(Accuracy) 精确率(Precision) 召回率(Recall)和F1-Measure

本文介绍了机器学习中评估模型性能的四个关键指标:准确率、精确率、召回率和F1-Measure。准确率是正确分类样本数与样本总数的比值;精确率是在预测为正类的数据中,正确预测的比例;召回率是在测试集中正类数据被正确预测的比例;F1-Measure是精确率和召回率的调和平均数,用于平衡两者。在不同的应用场景中,这些指标的重要性可能不同。
摘要由CSDN通过智能技术生成

先验知识

我们首先将数据的类别统一分为两类:正类负类。例如:一个数据集中的数据一共有3类,小学生、中学生、高中生。我们的目标是预测小学生,那么标记为小学生的数据就是正类,标记为其他类型的数据都是负类。

数据有两种状态:测试集数据预测结果数据

对一批测试数据进行预测,结果可以分成四种。

  • TP(True Positive): 原本是正类,预测结果为正类。(正确预测为正类)
  • FP(False Positive): 原本是负类,预测结果为正类。(错误预测为正类)
  • TN(True Negative): 原本是负类,预测结果为负类。(正确预测为负类)
  • FN(False Negative): 原本是正类,预测结果为负类。(错误预测为负类)

准确率(Accuracy)

对于给定的测试数据集,分类器正确分类的样本数与样本总数之比,就称为准确率,即(TP+TN)/(TP+TN+FP+FN)

精确率(Precision)

在预测结果为正类的数据中,有多少数据被正确预测(原本就是正类),即TP/(TP+FP)

对应于检索中的查准率检索出相关文档数/检索出的文档总数

<
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值