先验知识
我们首先将数据的类别统一分为两类:正类和负类。例如:一个数据集中的数据一共有3类,小学生、中学生、高中生。我们的目标是预测小学生,那么标记为小学生的数据就是正类,标记为其他类型的数据都是负类。
数据有两种状态:测试集数据和预测结果数据。
对一批测试数据进行预测,结果可以分成四种。
- TP(True Positive): 原本是正类,预测结果为正类。(正确预测为正类)
- FP(False Positive): 原本是负类,预测结果为正类。(错误预测为正类)
- TN(True Negative): 原本是负类,预测结果为负类。(正确预测为负类)
- FN(False Negative): 原本是正类,预测结果为负类。(错误预测为负类)
准确率(Accuracy)
对于给定的测试数据集,分类器正确分类的样本数与样本总数之比,就称为准确率,即(TP+TN)/(TP+TN+FP+FN)
精确率(Precision)
在预测结果为正类的数据中,有多少数据被正确预测(原本就是正类),即TP/(TP+FP)
。
对应于检索中的查准率,检索出相关文档数/检索出的文档总数