Jointly Optimize Data Augmentation and Network Training: Adversarial Data Augmentation in Human Pose

Jointly Optimize Data Augmentation and Network Training:Adversarial Data Augmentation in Human Pose Estimation

论文解读


一、简介

    这是一篇2018年的CVPR,这篇文章主要创新点在于把传统的数据增广利用 对抗学习的思想结合增强学习 来应用到了姿态估计上。、

二、文章内容

    文章主要有三个核心点:

        首先,文章说明了,不是去提出一个 姿态估计的新的结构,而是在原有的结构上讨论如何去提升。网络结构也比较容易理解,生成网络并不是直接去生成augment的图像,而是去生成“尺度、旋转”这几种变换的“分布”,然后结合上“混合高斯分布”再去应用到原图上。其中“尺度、旋转”的每一个bin对应于一个有界高斯分布。这里作者也提到了为什么不去直接应用到生成图像:1、直接去利用GAN生成对抗样本图像,这样训练起来会很难,作者实验发现没办法训练下去 2、直接把“尺度、旋转”应用到feature map上,这样虽然可行,但是无法估计groundtruth坐标变换带来的精度上的损失。


        

    1、ASR:

            这是对抗尺度变换以及对抗旋转变换。这个需要pre-train,也就是对于ASR这部分需要单独训练,利用一下loss公式进行训练。这是基于KL散度的loss function,对于s和r分别代表了尺度变换和旋转变换,m和n分别代表了尺度 和 旋转 的bin的个数。

                              

    2、AHO:

                这是遮挡样本生成,也就是在训练的时候对于数据中,比如说有14个关节,那么去遮挡 腿 ,用方块挡起来,这样去增强训练网络对于pose结构上的一种训练。这部分同样也会pre-train。AHO这部分不同于前面两部分,这里是先基于4x4大小的map去upscale到64x64的mask,然后直接操作到feature maps上面,这里作者强调了不会对后面坐标精度有影响,这个逻辑也很容易想明白。

                              

                                     

    3、Joint training of two networks:

                加入了 reward 机制,从最开始的整体网络结构可以看出,如果去掉这个 reward ,那么 G网络就没有办法和D网络一起update了。


                

        这里的具体过程可以参考下面的两个伪算法:



三、实验结果

        这里作者做了很多比较,有单方面的ASR AHO 还有结合使用的结果,对比的比较细致,这个pose 网络是采用了hourglass结构。




  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值