你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
动态规划是算法中的重点算法之一,化大为小思路来解决
1.确定下标意义,动态规划,我们都是通过dp来保存,确定dp[i]中i的含义,本题可表示,偷到第i家的最大金额为dp[i]
2.总结递归公式,首先了解题意,两户不能同时打劫,当偷到最后一户时,就存在偷或者不偷,偷得话就不能偷倒数第二家,可引入递推公式:
dp[i] = max(dp[i-1], dp[i-2] + v[i])
当偷最后一户时,就等于倒数第三家的最大价值+当前户的价值
不偷最后一户时,就等于是倒数第二家的最大价值,以此类推
3.确定边界:当房屋数量为0时,这是就没有东西可以偷,总金额就为0,dp[0] = 0
当房屋数量为1时,最高金额就只有这一家的金额,为dp[1] = v[0]
此时我们就可以开始写代码:
func rob(nums []int) int {
m := len(nums)
if m == 0 {
return 0
}
if m == 1 {
return nums[0]
}
dp := make([]int, m+1)
dp[1] = nums[0]
var max func(a int, b int) int
max = func(a int, b int) int {
if a > b {
return a
}
return b
}
for i:=2;i<=m;i++ {
dp[i] = max(dp[i-1], dp[i-2] + nums[i-1])
}
return dp[m]
}
4.空间优化,从上面看我们用dp存了所有的房间数的最大金额,其实我们只会获得m个房屋的最大金额,他取决于 dp[m-1],dp[m-2], 所以我们可以只记录这两个值,来进行空间优化
func rob(nums []int) int {
m := len(nums)
if m == 0 {
return 0
}
if m == 1 {
return nums[0]
}
sum1 := nums[0]
sum2 := nums[1]
for i := 2;i<m;i++ {
tmp := sum1
if sum1 < sum2 {
sum1 = sum2
}
sum2 = tmp + nums[i]
}
if sum1 > sum2 {
return sum1
}
return sum2
}