每日一题--07

圣诞活动预热开始啦,汉堡店推出了全新的汉堡套餐。为了避免浪费原料,请你帮他们制定合适的制作计划。

给你两个整数 tomatoSlices 和 cheeseSlices,分别表示番茄片和奶酪片的数目。不同汉堡的原料搭配如下:

  • 巨无霸汉堡:4 片番茄和 1 片奶酪
  • 小皇堡:2 片番茄和 1 片奶酪

请你以 [total_jumbo, total_small]([巨无霸汉堡总数,小皇堡总数])的格式返回恰当的制作方案,使得剩下的番茄片 tomatoSlices 和奶酪片 cheeseSlices 的数量都是 0

如果无法使剩下的番茄片 tomatoSlices 和奶酪片 cheeseSlices 的数量为 0,就请返回 []

 

示例 1:

输入:tomatoSlices = 16, cheeseSlices = 7
输出:[1,6]
解释:制作 1 个巨无霸汉堡和 6 个小皇堡需要 4*1 + 2*6 = 16 片番茄和 1 + 6 = 7 片奶酪。不会剩下原料。


解题思路:可以转换未简单的二元一次方程,注意边界条件就行
from typing import List


class Solution:
    def numOfBurgers(self, tomatoSlices: int, cheeseSlices: int) -> List[int]:
        a=(tomatoSlices-2*cheeseSlices)/2
        b=(cheeseSlices-a)
        if (a%1!=0 or b%1!=0 or a<0 or b<0):
            return []
        else:return [int(a),int(b)]

tomatoSlices = 16
cheeseSlices = 7
print(Solution.numOfBurgers(1,tomatoSlices,cheeseSlices))

 

内容概要:文章介绍了针对COVID-19的药物再利用的创新方法,这种方法融合了基于文献的知识(LitCovid和CORD-19数据集)及先进的知识图谱补全技术。具体采用了基于神经网络的TransE、RotatE等多种算法预测药物再利用的潜力,并通过开放和封闭的发现模式为预测结果提供合理的机制解释,包括发现模式、准确性分类及定性评估等手段,增强了方法的实用性。研究表明,TransE表现最优,并成功预测并验证了一系列药物作为COVID-19的治疗候选人选。此外,方法不仅适用于COVID-19,还具备应用于其他疾病药物再利用及其他临床问题解决的潜力。此研究为快速高效地推进药物再利用提供了一个新的计算框架。 适合人群:生物医学科研人员,从事药品再利用、人工智能药物筛选的专业研究人员,对生物信息数据分析和处理感兴趣的学者或技术人员。 使用场景及目标:① 利用计算模型预测药物能否被重新应用于新的适应症,尤其是在面对突发公共卫生事件时加快新药物的研发进程。② 对现有药物进行再评价,以发现更广泛、安全、有效的治疗用途,为临床治疗提供依据和理论指导。③ 探讨通过自动化手段发掘药物作用机理的技术路径。 其他说明:作者团队来自多个国家和地区,研究获得了多项国家级基金支持,论文详尽描述了实验细节,并附上了全部代码和数据资源供后续拓展和重复研究使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值