点击上方“芋道源码”,选择“设为星标”
管她前浪,还是后浪?
能浪的浪,才是好浪!
每天 10:33 更新文章,每天掉亿点点头发...
源码精品专栏
JD-hotkey 是京东 APP 后台热数据探测框架,历经多次高压压测和 2020 年京东 618 大促考验。
在上线运行的这段时间内,每天探测的key数量数十亿计,精准捕获了大量爬虫、刷子用户,另准确探测大量热门商品并毫秒级推送到各个服务端内存,大幅降低了热数据对数据层的查询压力,提升了应用性能。
该框架历经多次压测,性能指标主要有两个:
1 探测性能: 8核单机worker端每秒可接收处理16万个key探测任务,16核单机至少每秒平稳处理30万以上,实际压测达到37万,CPU平稳支撑,框架无异常。
2 推送性能: 在高并发写入的同时,对外推送目前性能约平稳推送每秒10-12万次,譬如有1千台server,一台worker上每秒产生了100个热key,那么这1秒会平稳推送100 * 1000 = 10万次,10万次推送会明确在1s内全部送达。如果是写入少,推送多,以纯推送来计数的话,该框架每秒可稳定对外推送40-60万次平稳,80万次极限可撑几秒。
每秒单机吞吐量(写入+对外推送)目前在70万左右稳定。
在真实业务场景中,可用1:1000的比例,即1台worker支撑1000台业务服务端的key探测任务,即可带来极大的数据存储资源节省(如对redis集群的扩充)。
介绍
对任意突发性的无法预先感知的热点请求,包括并不限于热点数据(如突发大量请求同一个商品)、热用户(如爬虫、刷子)、热接口(突发海量请求同一个接口)等,进行毫秒级精准探测到。
然后对这些热数据、热用户等,推送到该应用部署的所有机器JVM内存中,以大幅减轻对后端数据存储层的冲击,并可以由客户端决定如何使用这些热key(譬如对热商品做本地缓存、对热用户进行拒绝访问、对热接口进行熔断或返回默认值)。这些热key在整个应用集群内保持一致性。
核心功能: 热数据探测并推送至集群各个服务器。
适用场景:
mysql热数据本地缓存
redis热数据本地缓存
黑名单用户本地缓存
爬虫用户限流
接口、用户维度限流
单机接口、用户维度限流限流
集群用户维度限流
集群接口维度限流
worker 端强悍的性能表现
每10秒打印一行,totalDealCount代表处理过的key总量,可以看到每10秒处理量在270万-310万之间,对应每秒30万左右QPS。
仅需要很少的机器,即可完成海量key的实时探测计算推送任务。比扩容redis集群规模成本低太多。
界面效果
欢迎加入我的知识星球,一起探讨架构,交流源码。加入方式,长按下方二维码噢:
已在知识星球更新源码解析如下:
最近更新《芋道 SpringBoot 2.X 入门》系列,已经 101 余篇,覆盖了 MyBatis、Redis、MongoDB、ES、分库分表、读写分离、SpringMVC、Webflux、权限、WebSocket、Dubbo、RabbitMQ、RocketMQ、Kafka、性能测试等等内容。
提供近 3W 行代码的 SpringBoot 示例,以及超 4W 行代码的电商微服务项目。
获取方式:点“在看”,关注公众号并回复 666 领取,更多内容陆续奉上。
文章有帮助的话,在看,转发吧。
谢谢支持哟 (*^__^*)