向量数据库是如何工作的?

点击上方“芋道源码”,选择“设为星标

管她前浪,还是后浪?

能浪的浪,才是好浪!

每天 10:33 更新文章,每天掉亿点点头发...

源码精品专栏

 

来源:twitter-thread.com/t/ZH/

1655626066331938818

05e06ab630b512f948e4f34e464c9626.jpeg


向量数据库和 Embedding 是当前 AI 领域的热门话题。

Pinecone 是一家向量数据库公司,刚刚以约 10 亿美元的估值筹集了 1 亿美元。

Shopify、Brex、Hubspot 等公司都在他们的 AI 应用程序中使用向量数据库和 Embedding。那么,它们究竟是什么,它们是如何工作的,以及为什么它们在 AI 中如此重要呢?让我们一探究竟。

我们先看第一个问题,什么是 Embedding?你可能在 Twitter 上已经看到这个词被无数次提及。

简单来说,Embedding 就是一个多维向量数组,由系列数字组成 。它们能够代表任何东西,比如文本、音乐、视频等等。我们这里将主要关注文本。

9d8da326b960ebcc92848c7f6d03f59d.jpeg

创建 Embedding 的过程非常简单。这主要依靠 Embedding 模型(例如:OpenAI 的 Ada)。

你将你的文本发送给模型,模型会为你生成该数据的向量结果,这可以被存储并在之后使用。

Embedding 之所以重要,是因为它们赋予我们进行语义搜索的能力 ,也就是通过相似性进行搜索,比如通过文本的含义。

因此,在这个例子中,我们可以在一个向量空间上表示“男人”、“国王”、“女人”和“王后”,你可以非常容易地看到它们在向量空间之间的关系。

fd7ae66da96904a81ca487ab5fc607cb.jpeg

来看一个更直观的例子:

假设你是一个有一大箱玩具的小孩。现在,你想找出一些类似的玩具,比如一个玩具汽车和一个玩具巴士。它们都是交通工具,因此它们是相似的。

这就是所谓的 “语义相似性”—— 表示*某种程度上** 事物具有*相似的含义或想法

现在假设你有两个相关联但并不完全相同的玩具,比如一个玩具汽车和一个玩具公路。它们并不完全相同,但因为汽车通常在公路上行驶,所以它们是相互关联的。

那么,Embedding 为何如此重要呢?主要是由于大语言模型(LLM)存在上下文限制 。在一个理想的世界中,我们可以在一个 LLM 提示中放入无限数量的词语。但是,正如许多人所知,目前我们还做不到。以 OpenAI 的 GPT 为例,它限制在大约在 4096 - 32k 个 token。

因此,由于其 “内存”(即我们可以填充到其 token 的词语的数量),我们与 LLM 的交互方式受到了严重限制。这就是为什么你不能将一个 PDF 文件复制粘贴到 ChatGPT 中并要求它进行总结的原因。(当然,现在由于有了 gpt4-32k,你可能可以做到这一点了)

那么,怎么把 Embedding 和 LLM 关联起来解决 token 长度限制的问题呢?实际上,我们可以利用 Embedding,只将相关的文本注入到 LLM 的上下文窗口中。

让我们来看一个具体的例子:

假设你有一个庞大的 PDF 文件,可能是一份国会听证会的记录(呵呵)。你有点懒,不想阅读整个文件,而且由于其页数众多,你无法复制粘贴整个内容。这就是一个 Embedding 的典型使用场景。

所以你将 PDF 的文本内容先分成块,然后借助 Embedding 将文本块变成向量数组,并将其存储在数据库中。

在存储分块的向量数组时,通常还需要把向量数组和文本块之间的关系一起存储,这样后面我们按照向量检索出相似的向量数组后,能找出对应的文本块,一个参考的数据结构类似于这样:

{

[1,2,3,34]: '文本块1',
[2,3,4,56]: '文本块2',
[4,5,8,23]: '文本块3',

……



}

现在你提出一个问题:“他们对 xyz 说了什么”。我们先把问题“他们对 xyz 说了什么?”借助 Embedding 变成向量数组,比如[1,2,3]。

现在我们有两个向量:你的问题 [1,2,3] 和 PDF [1,2,3,34],然后,我们利用相似性搜索,将问题向量与我们庞大的 PDF 向量进行比较。OpenAI 的 Embedding 推荐使用的是余弦相似度。

ca28fdc5d49eb9224c2e0d272e7960e9.png

好了,现在我们有最相关的三个 Embedding 及其文本,我们现在可以利用这三个输出,并配合一些提示工程将其输入到 LLM 中。例如:

已知我们有上下文:文本块 1,文本块 2,文本块 3。

现在有用户的问题:他们对 xyz 说了什么?

请根据给定的上下文,如实回答用户的问题。

如果你不能回答,那么如实告诉用户“我无法回答这个问题”。

就这样,LLM 会从你的 PDF 中获取相关的文本部分,然后尝试如实回答你的问题。

这就简单的阐述了 Embedding 和 LLM 如何为任何形式的数据提供相当强大的类似聊天的能力。这也是所有那些“与你的网站/PDF/等等进行对话” 的功能如何工作的!

请注意 Embedding 并非 FINE-TUNING。



欢迎加入我的知识星球,一起探讨架构,交流源码。加入方式,长按下方二维码噢

3f590096a0b125c40808c707cf201ace.png

已在知识星球更新源码解析如下:

61a800ff3928cc543d112753982064a0.jpeg

b0fc1e26b5b71df539851d7a091c322e.jpeg

46d9ec9fdae1575b6108d3aa0e01abcf.jpeg

3ac333b3484f81946f2b7e5d8e13d660.jpeg

最近更新《芋道 SpringBoot 2.X 入门》系列,已经 101 余篇,覆盖了 MyBatis、Redis、MongoDB、ES、分库分表、读写分离、SpringMVC、Webflux、权限、WebSocket、Dubbo、RabbitMQ、RocketMQ、Kafka、性能测试等等内容。

提供近 3W 行代码的 SpringBoot 示例,以及超 4W 行代码的电商微服务项目。

获取方式:点“在看”,关注公众号并回复 666 领取,更多内容陆续奉上。

文章有帮助的话,在看,转发吧。
谢谢支持哟 (*^__^*)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值