我学会了做网站的防盗链

👉 这是一个或许对你有用的社群

🐱 一对一交流/面试小册/简历优化/求职解惑,欢迎加入「芋道快速开发平台」知识星球。下面是星球提供的部分资料: 

👉这是一个或许对你有用的开源项目

国产Star破10w的开源项目,前端包括管理后台、微信小程序,后端支持单体、微服务架构

RBAC权限、数据权限、SaaS多租户、商城、支付、工作流、大屏报表、ERP、CRMAI大模型、IoT物联网等功能:

  • 多模块:https://gitee.com/zhijiantianya/ruoyi-vue-pro

  • 微服务:https://gitee.com/zhijiantianya/yudao-cloud

  • 视频教程:https://doc.iocoder.cn

【国内首批】支持 JDK17/21+SpringBoot3、JDK8/11+Spring Boot2双版本 

来源:程序员小富


下午摸鱼的时候遇到了一件有意思的事,在网上找到一个资源站,将资源站的 url 放到自己的博客里,想白嫖一波,结果在我自己的博客里链接失效了,折腾半天忽然想起来,这个网站应该是做了防盗链处理。

什么是盗链

盗链是个什么操作,看一下百度给出的解释:盗链是指服务提供商自己不提供服务的内容,通过技术手段绕过其它有利益的最终用户界面(如广告),直接在自己的网站上向最终用户提供其它服务提供商的服务内容,骗取最终用户的浏览和点击率。受益者不提供资源或提供很少的资源,而真正的服务提供商却得不到任何的收益。术语听得有点迷糊?那我们简单的举个栗子:

平时我们在TX网看新闻,里边有很多劲爆的图片、视频资源,每天吸引上亿的用户活跃浏览,赚着大把的广告费。有一天一个穷比程序员小富突发奇想,也想建一个自己的网站吸引用户赚广告费,但苦于自己没有资源,他灵光一闪盯上了TX网,心想:要是把它的资源为我所用,这样就能借助TX的资源为自己赚钱。

于是他通过爬虫等一些列技术手段,把TX网资源拉取到自己的小富网,绕过了TX网的展示页面直接呈现给用户,达到了自己不提供资源又能赚钱的目的。

而如此做法却严重的损害了TX网的利益,不仅分流了大量用户,而且由于小富网的大量间接资源请求,大大增加TX网服务器及带宽的压力。

TX网蛋糕被动,忍无可忍决定封杀小富网这类空手套白狼的站点,终于祭出防盗链系统,对除了在TX网本站以外发起的资源请求全部封杀,小富网没法再拉取资源,小富一下子又成了穷比,嘤嘤嘤~上边我们简单的举例说了什么是网站的盗链,再总结的简单点就是小站点盗取大站点资源以此来获利的一种行为。

既然有人盗就会有人防盗,接下来在看看怎么防止盗链。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://github.com/YunaiV/ruoyi-vue-pro

  • 视频教程:https://doc.iocoder.cn/video/

如何防盗链

防盗链在google新浪网易天涯等,内容为主的网站应用的比较多,毕竟主要靠资源内容赚钱的嘛。

提到防盗链的实现原理得从HTTP协议说起,上边我们说过设置防盗链以后,会对 “除了在TX网本站以外发起的资源请求全部封杀”,那么问题来了,如何识别一个请求URL是从哪个站点发出的呢?

熟悉HTTP协议的小伙伴应该知道,在HTTP协议头里有一个叫referer的字段,通过referer 告诉服务器该网页是从哪个页面链接过来的,知道这个就好办了,只要获取 referer 字段,一旦检测到来源不是本站即进行阻止或者返回指定的页面。

防盗链的核心理念:尽量做到不让外站获取到我的资源,即便能通过一些手段获取到资源,也让你的获取过程异常繁琐复杂,无法实现自动化处理,或者干脆就给你有问题的资源恶心死你。

防盗链的方法比较多,基于HTTP协议头的referer属性也只是其中一种,下边我们来分析几种实现防盗链的方法,如果你有更好的实现方法欢迎留言哦。

基于 HTTP 协议的 referer

基于HTTP协议中的 referer做防盗链,可以从网关层或者利用AOPFilter拦截器实现。

使用Nginx在网关层做防盗链,目前是最简单的方式之一。通过拦截访问资源的请求,valid_referers 关键字定义了白名单,校验请求头中referer地址是否为本站,如不是本站请求,rewrite 转发请求到指定的警告页面。

在 server 或者 location 配置模块中加入:valid_referers none blocked,其中 none : 允许没有http_refer的请求访问资源(比如:直接在浏览器输入图片网址);blocked : 允许不是http://开头的,不带协议的请求访问资源。

注意 :这种实现可以限制大多数普通的非法请求,但不能限制有目的的请求,因为可以通过伪造referer信息来绕过。

[root@server1 nginx]# vim conf/nginx.conf

      location / {
            root /web;
             index index.html;
      }
      location ~* \.(gif|jpg|png|jpeg)$ {
            root /web;
            valid_referers none blocked www.chengxy-nds.top;
            if ($invalid_referer){
                #return403;
                rewrite ^/ https://img-blog.csdnimg.cn/20200429152123372.png;
         }
     }

     server {
         listen 80;
         server_name www.chengxy-nds.top;
         location / {
                 root /bbs;
                 index index.html;
         }
    }
    
[root@server1 nginx]# systemctl restart nginx

Filter拦截器的实现方式更加简单,拦截指定请求URL,拿到HttpServletRequest 中 referer值比对是否为本站。

public class MyFilter implements Filter {
    @Override
    public void doFilter(HttpServletRequest request, HttpServletResponse response,
            FilterChain chain) throws IOException, ServletException {
            
        HttpServletRequest req = (HttpServletRequest) request;
        HttpServletResponse res = (HttpServletResponse) response;
        String referer = req.getHeader("referer");
        
        if (referer == null || !referer.contains(req.getServerName())) {
            req.getRequestDispatcher("XXX.jpg").forward(req, res);
        } else {
            chain.doFilter(request, response);
        }
    }
}

登录验证,禁止游客访问

登录验证这种就属于一刀切的方式,一般在论坛、社区类网站使用比较多,不管你发起请求的站点是什么,到我这先登录,没登录请求直接拒绝,简单又粗暴。

图形验证码

图形验证码是一种比较常规的限制办法,比如:下载资源时,必须手动操作验证码,使爬虫工具无法绕过校验,起到保护资源的目的。

实现防盗链的方式还有很多,这里就不一一列举了(别问,问就是还有很多)。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://github.com/YunaiV/yudao-cloud

  • 视频教程:https://doc.iocoder.cn/video/

总结

本来没想写这篇文章,下午搭建自己的博客整理资料,白嫖别人资源没成功有感而发,哈哈哈~ 正好借此机会简单的介绍一下防盗链的概念,提醒 everyone 在开发中要提高安全意识。其实盗链与防盗链就是像是矛与盾一样,说不好是矛更锋利还是盾更坚固,做不到绝对的防盗。道高一尺魔高一丈,盗链的手段越高,相应的防盗技术也会越成熟。


欢迎加入我的知识星球,全面提升技术能力。

👉 加入方式,长按”或“扫描”下方二维码噢

星球的内容包括:项目实战、面试招聘、源码解析、学习路线。

文章有帮助的话,在看,转发吧。
谢谢支持哟 (*^__^*)
内容概要:本文详细介绍了一个基于CNN-GRU与AdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力与鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发的全流程,提供了完整的代码示例与模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习与集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署与交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制与可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRU与AdaBoost协同工作的原理与优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值